面向2030:多元场景下氢能减碳经济性研究--清华大学.pdf
清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 百人会氢能中心隶属于中国电动汽车百人会,是致力于推动氢 能和碳中和领域研究、产业发展的专业平台。主要任务是落实国家 战略部署,开展氢能和碳中和领域的产业研究及关键技术研发应用, 促进国内外“政产学研用”的交流合作,稳步推动中国氢能产业协 同创新,实现产业可持续发展。 车百智库是一家由中国电动汽车百人会联合权威机构、产业链 头部企业共同发起成立的专业研究机构,主要围绕汽车电动化、智 能化、网联化、绿色化以及能源变革、交通变革、城市变革等多个 方向开展研究。 本研究报告属阶段性研究成果,仅供参考。数据引用、观点收 集研究论据等暂未逐一注明出处,由于部分信息来自外部,且未与 企业一一核对,对一些企业的分析如不准确,以实际情况为准。 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 课题组 课题指导人 张永伟 课题负责人 张 真 课题编写组 云祉婷、张凡、黎妍、张家斌、吴冰 课题协调人 苗乃乾 课题顾问 刘小诗、綦玖竑、刘运辉、史英哲、刘倩、张丹 ������������������������������� ���������������������������������� ���������� ������������������������ ��������������������������������� ��������������������������������� ���������������������������������� ���������������������������������� ��������������������������������� ���������������� nqZñ 5.ÊpJ_Bæ{ }[rn°[r,(8Q|m¸,¸q+Ojn$o �������� ��������������������������������� ���������������������������������� ������������� ������� �������� ���� ��� ������� ����������������� 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 执行摘要 ������������������������������� ���������������������������������� ���������� ������������������������ ��������������������������������� ��������������������������������� ���������������������������������� ���������������������������������� ��������������������������������� ���������������� nqZñ 5.ÊpJ_Bæ{ }[rn°[r,(8Q|m¸,¸q+Ojn$o �������� ��������������������������������� ���������������������������������� ������������� ������� �������� ���� ��� ������� ����������������� 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 � �奓蝭��鴡��烾濚 屙齜 鴡硓筚烾濚 (g CO2e /MJ) 鴡硓筚烾濚 (kg CO2e /kg H2) �愾�������奓蝭 301 36 邁蝙嫇奓蝭 208.33 25 ����奓蝭 174.17 20.9 ���������鴡烾濚墢��� 125 15 ��蝙��奓蝭 111.83 13.42 送軕邁蝙妭卝蝭 108.75 13.05 螃鴜溤劈妭卝蝭 104.08 12.49 务愾蟷術鴡烾濚 102 务愾翘術鴡烾濚 90 ���������鴡烾濚���� 41.67 5 ��鴡蝭ㄋ詙裂蝭����蝭�翶墢�����鴡 蝭ㄋ詙裂蝭翶墢 40.83 4.9 �� �������� �蝭���� 36.67 4.4 ���������� ������蝭�� 28.3 3.4 ����������������蝭 25 3 �愾�鴡蝭翶墢 20 2.4 ����� ����蝭�������蝙������务愾����蟷��������� ����� ��������������鴡硓筚����������鴡������� ������ ��������������������������� 2022 �� 2030 �� 2050 ���� 30 �����13 ���� � 8 �����2030 ����� 50�300 ������������������������ 7.7�46.2���������� 2050 ����� 50�300 ������������������������ 12.5� 75������������������������������������ ������������������ 4200 ����� 20������� 3500 �� �� 2030 ��������� 13 �������������� 12 �������� ���� 100 ��� ��������������������� 2454 �� 2680 ������������������ 226 ������� 20���� 25.9�� �������蝭痩纡��蝭������蝭痩纡�����劵�蝭������ �蝭��馯�����ㄌ���劵 60 埈/����蝭����蝭ㄋ����蝭��� 妭卝蝭馯痩纡夑奃劵 13.2 埈/kg H 2 ㄋ17.0 埈/kg H 2 ㄋ14.5 埈/kg H 2 ����劵 300 埈 /����蝭����蝭ㄋ����蝭���妭卝蝭馯痩纡夑奃劵 1�.0 埈/kg H 2 ㄋ19.0 埈/kg H 2 ㄋ16.4 埈/kg H 2 ㄌ 0 5 10 15 20 25 300 绿氢替代煤制氢 绿氢替代天然气制氢 绿氢替代焦炉副产氢 碳价补贴下绿氢替代成本,元/ 千克氢气 275250225200175150125100756050 碳排放配额交易价,元/吨 5C when the price of CEA is ¥300 /ton, the break-even cost would be ¥18.0/kg, ¥19.0/kg and ¥16.4 /kg H2 respectively. 0 5 10 15 20 25 300 Greenhydrogenreplacingcoalforhydrogenproduction Greenhydrogenreplacingnaturalgasforhydrogenproduction Greenhydrogenreplacinghydrogenproductionfromcokeovengas G reenh ydro genrep l a c em entcostwith C E A, yua n ·k g -1 275250225200175150125100756050 CEA,yuan/ton Figure Break-even price between green hydrogen and its substitutions under CEA market The decreasing cost of green hydrogen and the increasing price of CEA will lead to the sooner economic feasibility of green hydrogen metallurgy. Hydrometallurgy is an essential technology for low carbon transition of steel production. Comparing hydrometallurgy and conventional blast furnace ironmaking, the cost can be calculated giving the price of hydrogen, coke and CEA. The production of 1 ton of iron requires 340 kg of coke, costing ¥850, and 1.25 tons of GHG emissions. It takes 89 kg of hydrogen for per ton iron, at a cost of ¥14/kg for coke oven gas by-product hydrogen, the price of green hydrogen varies by time, and the carbon emission is 0. Besides, compared to coke oven by-product hydrogen, green hydrogen can reduce an additional 8.05 kgCO2e/kg H2. Giving the CEA prices at ¥60/ton, ¥100/ton, and ¥200/ton, respectively. Calculation shows that by 2030 if the price of green hydrogen drops to ¥13/kg, and if the CEA price reaches ¥200/ton, green hydrogen metallurgy is cheaper than both coke metallurgy and by-product 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 Table Hydrogen Carbon Intensity by Pathways and Standards Source Carbon intensity (g CO 2 eq /MJ) Carbon intensity (kg CO 2 eq /kg H 2 ) Grid-average electrolysis 301 36 Coal gasification 208.33 25 Methanol cracking 174.17 20.9 Eligibility requirement of 5 FCV pilot city clusters in China 125 15 Natural gas reforming 111.83 13.42 Coke oven gas by-product 108.75 13.05 Chlor-alkali by-product 104.08 12.49 Gasoline 102 Diesel 90 Subsidy requirement of 5 FCV pilot city clusters in China 41.67 5 Low carbon and renewable hydrogen from China T/CAB 0078-2020 Standard 40.83 4.9 EU CertifHy 36.67 4.4 Renewable hydrogen from Eu Renewable Energy Directive II 28.3 3.4 Renewable hydrogen from Eu Taxonomy 25 3 UK low-carbon hydrogen standard 20 2.4 Source: Life-cycle Analysis of GHG Emissions of Hydrogen, and Recommendations for China, Research group If the petroleum refining and coal chemical can be included in CEA market, the decarbonization benefits of green hydrogen can be converted into noticeable economic value. Petroleum refining and coal chemistry are the largest hydrogen consumers. The cost of green hydrogen is expected to be ¥30/kg, ¥13/kg and ¥8/kg in 2022, 2030 and 2050 respectively. By 2030, when the price of CEA is ¥50-300/ton, the cost of green hydrogen per unit quality of chemical products, can be reduced by 7.7-46.2%, which starts to be slightly lower than that of grey hydrogen. In 2050, when the price of CEA is ¥50-300/ton, the cost of green hydrogen per unit can be reduced by 12.5-75%, which is significantly lower than that of grey hydrogen. Taking ammonia for instance, if ammonia is sold at ¥4,200/t and the total cost is about ¥3,500/t, the gross margin is 20%. By 2030, if green hydrogen drops to ¥13/kg, the cost of coal gasification hydrogen keeps ¥12/kg, and the price of CEA reaches ¥100/t, the combined cost of using green hydrogen and gray hydrogen for 1 ton ammonia is ¥2454 and ¥2680 respectively, saving an additional material cost of ¥226, and the gross margin can rise from 20% to 25.9%. In summary, when the grey hydrogen cost plus green hydrogen decarbonization benefit could equal the green hydrogen cost, it can be considered that green hydrogen could replace grey hydrogen economically. When the price of CEA is ¥60 /ton, the break-even price between green hydrogen and coal gasification, SMR and coke oven by-product hydrogen is ¥13.2 /kg, ¥17.0 /kg and ¥14.5 /kg H2 respectively; when the price of CEA is ¥300 /ton, the break-even cost would be ¥18.0/kg, ¥19.0/kg and ¥16.4 /kg H2 respectively. 0 5 10 15 20 25 300 Greenhydrogenreplacingcoalforhydrogenproduction Greenhydrogenreplacingnaturalgasforhydrogenproduction Greenhydrogenreplacinghydrogenproductionfromcokeovengas G reenh ydro genrep l a c em entcostwith C E A, yua n ·k g -1 275250225200175150125100756050 CEA,yuan/ton Figure Break-even price between green hydrogen and its substitutions under CEA market The decreasing cost of green hydrogen and the increasing price of CEA will lead to the sooner economic feasibility of green hydrogen metallurgy. Hydrometallurgy is an essential technology for low carbon transition of steel production. Comparing hydrometallurgy and conventional blast furnace ironmaking, the cost can be calculated giving the price of hydrogen, coke and CEA. The production of 1 ton of iron requires 340 kg of coke, costing ¥850, and 1.25 tons of GHG emissions. It takes 89 kg of hydrogen for per ton iron, at a cost of ¥14/kg for coke oven gas by-product hydrogen, the price of green hydrogen varies by time, and the carbon emission is 0. Besides, compared to coke oven by-product hydrogen, green hydrogen can reduce an additional 8.05 kgCO2e/kg H2. Giving the CEA prices at ¥60/ton, ¥100/ton, and ¥200/ton, respectively. Calculation shows that by 2030 if the price of green hydrogen drops to ¥13/kg, and if the CEA price reaches ¥200/ton, green hydrogen metallurgy is cheaper than both coke metallurgy and by-product 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 hydrogen metallurgy. Table Total cost of Coke Metallurgy and hydrometallurgy Metallurgical methods Coke Coke oven gas by-product hydrogen Green hydrogen (2022) Green hydrogen (2030) Green hydrogen (2040) Raw materials consumed (kg/tHM) 340 89 89 89 89 Unit price of raw materials (¥ /kg) 2.5 14 30 13 10 Carbon emissions (tCO2/tHM) 1.25 0 -0.7 -0.7 -0.7 CEA cost (¥ /tHM, CEA=60/100/200) 76/125/250 0 -42/-70/-140 -42/-70/-140 -42/-70/-140 Total cost (¥ /tHM, CEA=60) 926 1246 2628 1115 848 Total cost (¥ /tHM, CEA=100) 975 1246 2600 1087 820 Total cost (¥ /tHM, CEA=200) 1100 1246 2530 1017 750 Compared with the potential benefits of decarbonization, the decline in vehicle cost and fuel hydrogen price is more critical to the large-scale application of hydrogen fuel cell heavy trucks. Hydrogen fuel cell heavy-duty vehicle (HDV) are one of the effective ways to decarbonize road transport. At the current price, without subsidies, 49-ton fuel cell HDV are far more expensive than diesel and electric ones. By 2030, benefited from the decreasing of whole vehicle cost and hydrogen price, the Total Cost of Ownership (TCO) of fuel cell HDV may be lower than diesel HDV. When the CCER market is restarted, the fuel cell HDV owners can use this market-based mechanism to convert the decarbonization benefits into cash flows. According to the calculation, giving the price of CCER ¥60 /ton and the price of hydrogen ¥35 /kg, the TCO of hydrogen fuel cell HDV is ¥851.7 /100 km, while CCER income is about ¥6.4/100 km, accounting for less than 1%, which is too little to impact the cost. Table 49-ton heavy truck TCO calculation Fuel type Diesel Electricity Hydrogen (2022) Hydrogen (2030) Car purchase cost/thousand yuan 450 800 1400 1000 Operating cost/thousand yuan 1767.4 1409 2360.5 1091.8 Maintenance and labor cost /thousand yuan 468 464 523 523 Fuel cost/thousand yuan 1299.4 945 1837.5 568.8 Daily mileage /km 250 250 250 250 Lifetime/year 5 5 5 5 Annual operating dates 350 350 350 350 Price of fuel / (¥/L, ¥/kWh, ¥/kg) 9 1.2 35 13 Fuel consumption per 100 km /(L, kWh, kg) 33 180 12 10 Vehicle salvage value/thousand yuan 21 15 34 34 TCO/ thousand yuan 2196.4 2194 3726.5 2057.8 TCO/ yuan per 100 km 502.03 501.49 851.77 470.34 If the car purchasing cost is not considered, only the fuel consumption during the vehicle lifetime is calculated. If the CCER price is ¥100 /ton, the equilibrium price of fuel hydrogen and diesel is 23.9 yuan, and the CCER income accounting for 3.7%; when the CCER price is ¥200 /ton, the equilibrium price goes to 22.9 yuan, with the marginal contribution rising to 7.7%. Compared with CCER, the price decreasing of fuel cell HDV and hydrogen has a greater impact on TCO. However, CCER is still helpful in promoting the scale up of hydrogen fuel cell vehicles. 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 hydrogen metallurgy. Table Total cost of Coke Metallurgy and hydrometallurgy Metallurgical methods Coke Coke oven gas by-product hydrogen Green hydrogen (2022) Green hydrogen (2030) Green hydrogen (2040) Raw materials consumed (kg/tHM) 340 89 89 89 89 Unit price of raw materials (¥ /kg) 2.5 14 30 13 10 Carbon emissions (tCO2/tHM) 1.25 0 -0.7 -0.7 -0.7 CEA cost (¥ /tHM, CEA=60/100/200) 76/125/250 0 -42/-70/-140 -42/-70/-140 -42/-70/-140 Total cost (¥ /tHM, CEA=60) 926 1246 2628 1115 848 Total cost (¥ /tHM, CEA=100) 975 1246 2600 1087 820 Total cost (¥ /tHM, CEA=200) 1100 1246 2530 1017 750 Compared with the potential benefits of decarbonization, the decline in vehicle cost and fuel hydrogen price is more critical to the large-scale application of hydrogen fuel cell heavy trucks. Hydrogen fuel cell heavy-duty vehicle (HDV) are one of the effective ways to decarbonize road transport. At the current price, without subsidies, 49-ton fuel cell HDV are far more expensive than diesel and electric ones. By 2030, benefited from the decreasing of whole vehicle cost and hydrogen price, the Total Cost of Ownership (TCO) of fuel cell HDV may be lower than diesel HDV. When the CCER market is restarted, the fuel cell HDV owners can use this market-based mechanism to convert the decarbonization benefits into cash flows. According to the calculation, giving the price of CCER ¥60 /ton and the price of hydrogen ¥35 /kg, the TCO of hydrogen fuel cell HDV is ¥851.7 /100 km, while CCER income is about ¥6.4/100 km, accounting for less than 1%, which is too little to impact the cost. Table 49-ton heavy truck TCO calculation Fuel type Diesel Electricity Hydrogen (2022) Hydrogen (2030) Car purchase cost/thousand yuan 450 800 1400 1000 Operating cost/thousand yuan 1767.4 1409 2360.5 1091.8 Maintenance and labor cost /thousand yuan 468 464 523 523 Fuel cost/thousand yuan 1299.4 945 1837.5 568.8 Daily mileage /km 250 250 250 250 Lifetime/year 5 5 5 5 Annual operating dates 350 350 350 350 Price of fuel / (¥/L, ¥/kWh, ¥/kg) 9 1.2 35 13 Fuel consumption per 100 km /(L, kWh, kg) 33 180 12 10 Vehicle salvage value/thousand yuan 21 15 34 34 TCO/ thousand yuan 2196.4 2194 3726.5 2057.8 TCO/ yuan per 100 km 502.03 501.49 851.77 470.34 If the car purchasing cost is not considered, only the fuel consumption during the vehicle lifetime is calculated. If the CCER price is ¥100 /ton, the equilibrium price of fuel hydrogen and diesel is 23.9 yuan, and the CCER income accounting for 3.7%; when the CCER price is ¥200 /ton, the equilibrium price goes to 22.9 yuan, with the marginal contribution rising to 7.7%. Compared with CCER, the price decreasing of fuel cell HDV and hydrogen has a greater impact on TCO. However, CCER is still helpful in promoting the scale up of hydrogen fuel cell vehicles. 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 清氢学院 22 23 24 25 300 Greenhydrogencost B rea k- ev en pricefo rg r e e n h yd roge n anddiese l , w i t h C C E R , y u a n · k g - 1 H 2 275250225200175150125100756050 CCERprice,yuan/ton Figure Break-even price between green hydrogen and diesel, taking CCER into calculation In order to accelerate the large-scale application of hydrogen energy in petroleum refining, coal chemical, metallurgy, heavy trucks and other fields, this report makes the following recommendations. For carbon market, it is necessary to include chemical and metallurgy into CEA market as early as possible. Meanwhile, the voluntary emission reduction tools as represented by CCER also need to be restarted soon. For standards and regulations, a national standard for green hydrogen needs to be formed as soon as possible. The conversion mechan