快速热处理对直拉硅单晶氧沉淀和内吸杂的影响
集成电路特征线宽的不断减小对直拉 (CZ) 单晶硅片中的缺陷控制和内吸杂技术提出了愈来愈高的要求。在这种情况下 ,基于氧沉淀的内吸杂工艺在不断地改进。国际著名的硅片供应商 —— 美国的 MEMC 公司近年来提出的基于快速热处理 (RTP)的内吸杂工艺 ,是一个有里程碑意义的突破。 它不仅具有技术上的重要性 ,而且还引发了一个基本的科学问题 ,即 :RTP 对直拉硅片的氧沉淀是如何影响的。在这个问题上的研究尽管已经取得了很大的进展 ,但是 RTP对不同的直拉硅片及其在不同的热工艺过程中的氧沉淀行为的影响并没有彻底弄清楚。 本论文详细地研究了不同种类的直拉硅片在各种条件下的 RTP 预处理和后续热处理过程中的氧沉淀行为 ,以及基于 RTP 的内吸杂工艺 ,获得了如下有创新意义的结果 : 研究了普通直拉硅片和掺氮直拉硅片在经过高温 RTP 预处理后 ,再经过不同的低一高两步热处理后的氧沉淀行为。结果表明 :(1) 在 CZ 硅片中由 RTP 引入的空位在 800℃时增强氧沉淀形核的作用最强 ,而在 NCZ 硅片中氮和由 RTP 引入的空位在 800~ 1000℃温度范围内可以发生协同作用 ,更强烈地促进氧沉淀的形核。 (2)在 900℃以上 ,氮比空位有更强的促进氧沉淀形核的能力 ,但有空位存在时 ,氮促进氧沉淀形核的能力被进一步增强。根据 RTP 对掺氮直拉硅片和普通直拉硅片的氧沉淀影响的不同 ,提出掺氮直拉硅片的基于 RTP 的内吸杂工艺应该有别于普通直拉硅片的 ,即 :掺氮直拉硅片的工艺为在 1250℃的 RTP 处理后 ,从 800℃以 1℃ /min 速率升温至 1000℃并保温 16 小时 ;而普通直拉硅片的工艺则为在 1250℃的 RTP 处理后 ,再经过 800℃ /4 h+1000℃ /16 h 两步处理。 研究了 N_2 气氛下的 RTP 预处理的温度和降温速率 ,对硅片经低— 高两步退火后氧沉淀和洁净区形成的影响 ,提出了直拉硅片的基于 N_2 气氛下 RTP 的内吸杂工艺。与 Ar 气氛下的 RTP 相比 ,较低温度的 N_2 气氛下的 RTP 预处理就能使硅片在随后的低 — 高两步退火过程中形成高密度的氧沉淀。当减小 RTP 的降温速率时 ,在硅片近表面能形成洁净区。 在合适的降温速率下 ,RTP 的温度越低 ,硅片中形成的洁净区宽度越大 ,但体微缺陷 (BMD) 密度越低。 因此 ,选择合适的 RTP 温度和降温速率 ,结合后续低 — 高两步热处理 ,就可以在硅片内形成一定宽度的洁净区和合适密度的 BMD 区。 上述结果纠正了以前国际上普遍接受的 “ N_2气氛下的 RTP 预处理不能用于直拉硅片的内吸杂工艺 ” 的观点。 研究了在不同气氛下两步高温 RTP 预处理对轻掺硼和重掺硼 CZ 硅片在后续热处理中氧沉淀和洁净区形成的影响。对于轻掺硼硅片来说 ,如果硅片先在 Ar 气氛下进行第一步 RTP 时 ,第二步 RTP 的气氛决定了氧沉淀和洁净区的形成 ;如果在 N_2 或 O_2 气氛下进行第一步 RTP,则第二步 RTP无论在哪种气氛下进行 ,经过后续低 — 高两步热处理后都能获得洁净区和高密度的 BMD 区 ,只是 DZ 宽度有所差异。对于重掺硼 CZ 硅片来说 ,只经过一步 Ar 气氛下的 RTP 预处理后 ,再通过低一高两步退火 ,硅片内仅形成高密度的 BMD 区而不能形成洁净区 ;而当 RTP 预处理的气氛变为 O_2 时 ,硅片内的 BMD 密度则很低。折衷上述两种情况 ,重掺硼 CZ 硅片经历先在 Ar 气氛紧接着在 O_2 气氛下的高温 RTP 预处理后 ,再通过低 — 高两步热处理 ,即可形成高密度的 BMD 区和一定宽度的洁净区。 研究了表面有氮化硅薄膜的直拉硅片经历高温 RTP后 ,在随后的低 — 高两步退火中 BMD 和洁净区的形成情况。结果表明 :与通常的硅片经过1250℃的 RTP 预处理的情况相比 ,有氮化硅薄膜的硅片经过 1200℃的 RTP 后 ,在随后的低 —高两步热处理中产生的氧沉淀量与前者的相当 ,并能形成一定宽度的洁净区。初步认为 :在RTP 过程中 ,氮化硅薄膜的硅 -氮键发生断裂 ,随后氮原子从硅片表面向体内扩散。 在空位和氮的共同作用下 ,硅片的氧沉淀被显著地促进。 研究了轻掺硼 CZ 硅片和重掺硼 CZ 硅片经过两种氧沉淀形核热处理 ,即 :同在 800℃的常规炉退火和 RTP后 ,在 1000℃热处理时氧沉淀的情况。 对于轻掺硼硅片而言 ,RTP 处理 1 小时和常规热处理 4 小时导致相当的氧沉淀量 ,表明 RTP的光辐照促进了氧沉淀的形核过程 ,这可能与氧扩散被增强有关。对于重掺硼 CZ 硅片而言 ,RTP 与常规炉退火相比 ,前者不仅促进了氧沉淀的形核 ,而且使后续高温热处理形成的氧沉淀及其诱生缺陷在硅片截面上的分布情况发生了改变 ,与常规炉退火导致的 BMD 在硅片截面上均匀分布的情况不同 ,它具体表现为 :在硅片的近表面区域形成了大量的氧沉淀、位错环以及尺寸较大的层错 ,而在体内区域形成的是大量的氧沉淀以及少量的层错和伴生位错环的大尺寸氧沉淀。 研究了 CZ 硅中的氧沉淀在 RTP 和常规炉退火过程中的消融以及在后续常规炉退火过程中的氧沉淀的再生长。结果表明 :从间隙氧浓度升高的角度来看 ,RTP 在短时间内消融氧沉淀的效果可以与长时间的常规炉退火的相比拟 ;另一方面 ,氧沉淀经两种热处理方式消融后再生长的情况也有所不同 ,具体表现为 :经 RTP 消融处理后 ,由于小的氧沉淀未被完全消融 ,在氧沉淀再生长退火过程中 ,未消融的小的氧沉淀和较大的氧沉淀能够同时长大 ,因而 BMD 密度显著增加 ;而经常规炉退火消融处理后 ,小的氧沉淀被完全消融 ,体内残留较大的氧沉淀 ,它们作为氧沉淀再生长的核心 ,所以经过氧沉淀再生长退火后 ,BMD 密度基本不变 ,但氧沉淀尺寸显著增大。