太阳能光伏发电最大功率点间接跟踪算法研究_陈进美
»28 »1 ù 2 0 10 M1 £nullÈnull ?null÷null SnullÐ Water Resources and Power Vol.28 No.1 Jan.2 0 1 0 ÓcI|: 1000-7709(2010) 01-0148-04 þ ?;?ÈKvÿ qÄW¤õ6 ØEùî 陈进美1 null 陈 null 峦1, 2 (1.vÐÈ ýñÐý,é Z ! 830008; 2.È0 S/vÐ1îÄýñÐý, ¹+îû610054) K1: 针对太阳能光伏发电最大功率传统跟踪算法的跟踪对象为光伏阵列的输出功率,通过改变跟踪对象, 提出了MPPT参数null跟踪与双电压跟踪法,分析了间接跟踪算法的原理特点和实现方案 b在分析太阳能电 池等效电路模型的基础上,建立了太阳能电池阵列的数学模型,通过M PPT 仿真实验验证了此二种间接跟踪 算法可行有效,供借鉴 b 1oM: 光伏发电; 最大功率跟踪; 跟踪对象; 间接跟踪算法; 仿真 Ïms Ë|: TM 615ÓDS½ : A là ° ù: 2009-08-26,©í ° ù: 2009-09-15 Á[ “:vÐ21 W@Ú©âпêýñÁ ù[ “( XJU2008JGY21) Teº:çÉ Å( 1987-), 3, « Vùî 3,ùîZ_¹È ï“d± ¹,E-mail:chenjinmei053@ yahoo.com. cn null null þ ?T¹BÕ¥ s ä ?÷,[ | Ð a¨° a b±íê aí u×KÅ©ÿµ ¥ª ]7î¹1ÿ¥Ä,$ ç;Èâ eÅE sýTÆ1« a* HW a? f #ÌâÑMÄ¥Y v;È9 E q ^.Ë ¥© Ú1 p Ú, O“ dY³@ y ? ¡@ eÅ1 p,#M¥ qî gÚ bkN, Ó.dMPPT ØE ¥@,YV¿Mõ6`,4 MPPT null õ6EÐ Èâõ6E,s ØE¥ð Ø+Ä, iYV_ L£ ØE[3] b 1null;Èý¥©rÈ ^ ;Èý ^ æ¨;r?È,;Èý ¥Ðµ õ¤îí ^ H, þ ?T¨/ Á 3È @,©rÈ ^ Âm1 î U bmÏ,; Èý©r¹BñÈ @¹Iph¥ @÷ÐBñ_ =)5i ó; Rs¹1 óÈE; Rsh¹ ^s @ÈE b m1 null þ ?;Èý¥©rÈ ^ Fig.1 null Equivalent circuit model of solar cells ®m1 V p¤;Èý¥ {+Zñ[4] : I= Iph- I0 e q( V+ IRs) AkT - 1 - V+ IRsR sh (1) TÏ, I¹ {È @; Iph¹;vÁ 3¥È @; I0¹ Èý¥Q ëÈ @; q¹È0ÈÈ ; V¹ { Èâ; A¹;ÈýÏö8 q¥P-N²“ (A= 1.11) ; k¹j:% £È ; T¹ÈýÑ, K; Rs aRsh¹©rÈE, |Rsh= 2 000 null b þ ?; ¥· Ð : I = Isc 1- C1 e VC2Voc - 1 - 1 (2) Ï C1 = 1- Im / Isc e Vm C2 Voc C2 = Vm / Voc - 1 ln(1- Im/ Isc) - 1 TÏ, Isc¹ ^È @; Voc¹ 7 ^Èâ; Im aVmsY ¹Kvÿ qÄÈ @ aÈâ b 2null nullõ6E ®È9 E V©, þ ?“dýT¿K vÿ qÄ)µ: dP dV= IdV dV = I+ V dI dV= 0 (3) ®¿RshÍ »í kv,® T(1) V¤: I= Iph- I0 e q(V+ IRs) AkT - 1 (4) »yRsÍ »¹ ,,( I / V ) |1 V¤: ln IV- qVAkT = ln qI0AkT= null (5) òÕHq/Kvÿ qÄ(MPP)¥null´ ÂV1 î U[ 8] b®V V A,Ñ vS¶ =Mî H, null¥MÄS¶l, V9 Ø © f /¥null´ b ûÅ wLÉ°Ø,#dzõ6null´ VÙ pKv ÿ qÄ bNE V ? ¯Ù p ¥Kvÿ q Ä,¹N| nullõ6EÐ îEÈ9 E© ɯ V¤rT÷ ØX¥Kvÿ qÄ,¥ ØE @ñ Âm2 î U bmÏ, c= q/ (A kT ), nullg¹ “ S´; k¹] b1DÐnull¥}Г b¾W¤ ØE í³ {ÿ qP´,null´© 9 ØeL b V1nullòÕ f /MPP)¥null´ Tab.1 null nullof MPP Department under different cases °v“ PN²Ñnull´ °v“ PN²Ñnull´ 0. 3 30 - 17.0 0. 6 55 - 14. 7 0. 3 40 - 16.1 0. 9 30 - 16. 2 0. 3 55 - 14.9 0. 9 40 - 15. 7 0. 6 30 - 16.4 0. 9 55 - 14. 5 0. 6 40 - 15.8 3null Èâõ6E .d¥Kvÿ qõ6“Èâ| HBî m2null nullõ6E ØE @ñ Fig.2 null Process of parameter null tracing algorithmic dz¤Bñ´, îµ¥ÈýýT¿dB ÿ /,7 Èâõ6 ØE Æ ñÈýð {È â, ØE÷¿;Èý¥ {+ wL, Âm3 î U[9] b m3null Èâõ6E Uim Fig.3 null Schemat ic diagram of dual voltage-tracking !çBñ| qk,Ø v þ ?Èýð¥ {+: V 2= k V1 I1= kI2 (6) ñ {ÈâµÐ ñ {È @µB° û¹k´, v¥ {Èâhl, l¥ 9v,B/ÍKvÿ qÄ),V7 VÙ p ¥Kvÿ qÄ b ØE @ñ Âm4 î U b Èâõ 6E ^BÕz¥W¤õ6Kvÿ qÄ ØE, @) ^“d³½ *_© ! b null149null»28 »1 ùnull null null null null null nullçÉ Å©: þ ?;?ÈKvÿ qÄW¤õ6 ØEùî m4 null Èâõ6E ØE @ñ Fig.4 null Process of dual voltage tracking method 4null; ;Èý¥ {+ Û;v °,¦½Ñ, +/r,©. þ1îõ6“d¥ùî Ð !9[ J] . £È ?÷ SÐ, 2009,27(2): 215-218. [3] null Mao Lin Chiang, Chih Chiang Hua, Jong Rong Lin. Direct Power Control for Distributed PV Power Sys- tem[ A]. Power Conversion Conference[ C]. Osaka, Japan,2002: 311-315. [4] nullñZ!, d ,1ê¿.¿MATLAB/ Simulink¥ ;Èýy Ð_[ J] . ]vÐÐ(ýñ/ ñ), 2006,21( 4) :74-77. m5null; Fig.5 null PV array model null null null null nullm6null null´¥õ6 f null null null null null null null null nullm7null Èâõ6E¥ {ÿ qÐ {È @ Fig.6 null Tracking situation of paramet er nullnull Fig. 7null Out put power and current of dual voltage tracking method (下转第56页) null150null £nullÈnull ?null÷null SnullÐnull null null null null null null null null null null null null null null null null 2010 M 4null²Ô a.¨l Û bW =¥² V L Ø ¿ Ød9s× ïÞ FÁ×ç,VÀ qs? p Ù p (´ÐSµÉ9 Ø, Vh ¦¹µ,÷ L b b.[ CvÞ¹ è,9 زTV ü¾ZE Ø V L,Ú Ú, V¹k b IÓD: [ 1] nullf§,ç .,RÞ Ü. V L Ø £ý²¨Ï ¥)[ J] . £È ?÷ SÐ, 2008,26(2): 85-87. [2] nullëy ü,f¡!,çCÝ.× ïÞ ª FÁ×ç V L sùî[J].ûrýñÐ,2008,30(10):1 444-1 448. [3] nullÑÏ¿,Û ,§ lk.× ïÞ FÁ×çs[ J] . ¦ öÛ,2008, 30(12) :112-113. [4] nullk, Ê .× ïÞ ª FÁ×ç V Ls[ J]. ÜvÐÐ(1 SÐñ), 2001, 29(2): 80-83. [5] nullì ëo, äy¿,¦ ë[,©. £ý²8“ V L 9 ØZE[ J] .ê £ æ £È, 2009,27(2): 1-3,6. [6] nulló b,.² V Ls# ÛµKíE[ M] . Ø:ýñ ,2005. [7] nulluSG,¦S.l Û bW =¥² V L P ¨sZE[ J] .r !ýñÐ, 1996,29(4): 47-51. Reliability Analysis of Stability against Sliding forLongtan Dam LI Dandan1 null LI Tongchun1 null XIAO Feng2 (1. College of Water Conservancy and Hydropower, Hohai University, Nanjing 210098, China; 2. Mid-South Design and Research Institute, CHECC, Changsha 410014, China) Abstract: According to the effect of layer of weaknesses of gravity dam on the structural safety of dam, taking the Longtan dam for an example, selecting nine layers of weakness, reliability of stable against sliding of layers are analyzed and the system reliability of later is calculated by using the stress result, which is calculated by the nonlinear FEM. The results showed that the proposed method is reasonable and reliable and can be used for reference. Key words: gravity dam; layer of weakness; stability against sliding; finite element method; reliability (上接第150页) [ 5] null Tse K K, Billy M T Ho, Henry Shu-Hung Chung, et al. A Comparative Study of Maximum-Power- Point Tracker for Photovoltaic Panel Using Switching- Frequency Modulation Scheme[ J]. Transactions on In- dustrial Electronics, 2004, 51(2) :410-418. [ 6] null Federico Scapino, Filippo Spertino. Circuit Simula- tion of Photovoltaic Systems for Optimum Interface between PV Generator and Grid[ A ]. IEEE 2002 28th Annual Conference [ C] . Sevilla, 2002: 1 125- 1 129. [ 7] null Veerachary M, Senjyu R, Uezato K. Neura-l network- based Maximum-Power- Point Tracking of Coupled-in- ductor Interleaved-boost-converter-supplied PV Sys- tem Using Fuzzy Controller[ J] . Transactions on In- dustrial Electronics, 2003, 50( 4) :749-758. [8] null Park Joung-Hu, Jun-Youn Ahn, Bo-Hyung Cho, et al. Dua-l Module-Based Maximum Power Point Tracking Control of PhotovoltaicSystems[J] . IEEE Transactions on Industrial Electronics, 2006,53(4) :1 036-1 047. [9] null Shmilovitz D. Photovoltaic Maximum Power Point Tracking Employing Load Parameters[ A ]. IEEE ISIE 2005[C]. Dubrovnik, Croatia,2005:1 037-1 042. Study on MaximumPowerPoint Indirect Tracking Algorithm of SolarPhotovoltaicPower CHEN Jinmei1 null CHEN Luan1, 2 ( 1. Collegeof Electrical Engineering, Xinjiang University, U rumqi 830008, China; 2. College of Automation Engineering, U niversity of Electronic Science and Technology of China, Chengdu 610054, China) Abstract: The tracking object of the traditional M PPT in solar power is photovoltaicarray s output power. By chan- ging thetracking object, this paper proposes thenull-MPPT and dual voltagetracking method, analyzes the principlecharac- teristics of the indirect tracing algorithm, and then designs the algorithm s implementation. Based on the analysis of thee- quivalent circuit model of the solar battery, themathematical model of the solar battery array is established and the effec- tiveness of these two algorithms are verified by the MPPT simulation experiment. Key words: photovoltaic power; MPPT; tracking object; indirect tracing algorithm; simulation null56null £nullÈnull ?null÷null SnullÐnull null null null null null null null null null null null null null null null null 2010 M