银纳米线在太阳能电池中的应用
Solution-Processed Highly Conductive PEDOT:PSS/AgNW/GOTransparent Film for E? cient Organic-Si Hybrid Solar CellsQiaojing Xu, Tao Song,* Wei Cui, YuqiangLiu, WeidongXu, Shuit-TongLee,and BaoquanSun*JiangsuKey Laboratoryfor Carbon-BasedFunctionalMaterials silvergrid electrode;andpristine AgNW TCE with aconcentrationof 3.5 mg/mL. The short-circuitcurrent density(Jsc), the open-circuitvoltage(Voc), the ?ll factor (FF), andthePCE of solarcellswith di?erenttop anodesaresummarizedinTable 1 and Table S2 in the Supporting Information. Thedevicesbasedon PEDOT:PSS/AgNW/GO TCEs showhigherPCE than those based on either conventionalAg grids orPEDOT:PSS/AgNW TCEs without GO. With the GO layer,the PCEof the hybrid devicesis enhancedfrom ~ 11 to ~ 12%on average.In particular,the FF is signi?cantly improved byintegrationof GO becauseof reducedseriesresistanceof thedevices(Table 1 andTableS2in the SupportingInformation).Seriesresistancewasextractedfrom slopeof J- V curvesat J =0.40 Seriesresistanceof the deviceswith PEDOT:PSS/AgNW/GO TCEs is much lower than that of the devicewithout GOand the Ag grids device. Seriesresistanceof solar cells isin?uencedby the lateralRs aswell asthe contactresistance.41Lateral resistanceof PEDOT:PSS ?lms was reducedby thepercolatedAgNW networks.Meanwhile,contact resistanceofthe “ sandwich” structure of PEDOT:PSS/AgNW/GO is lowbecauseof the strong electrostaticadhesionbetween hydro-philic PEDOT:PSSand GO.By analyzingthe device performance,we found that GOtendedto takea more prominentrole in the sparsedistributedAgNW network than the denselypackedone.Speci?cally,forthe GO-covereddevicefabricatedfrom 1.5 mg/mL AgNWs,the FF and the PCE were improved by 12.2 and 11.8%,respectively.While for the GO-covereddevice with a higherAgNW concentrationof 5 mg/mL, the correspondingFF andthe PCE wereslightly increasedby 5.4 and 3.4%,respectively.This phenomenoncanbeexplainedasfollows:dueto the loosemorphology of the AgNW mesh, the sparseAgNW networkcannot provide enough conducting paths to deliver chargecarriersgeneratedby light; it could be readilycompensatedbyincreasingthe amount of contactingjunctionsand decreasingthe junction resistancein AgNW network by the GO sheetscoating.For the denseAgNW network, the Rs is alreadyverylow and the space for further improvementsby the GOcoverageis ratherlimited. Asa resultof abalancebetweenlightabsorptionand chargecarriercollection,a remarkablePCE of13.3%(with a Jsc of 28.4mA/cm2, a Voc of 0.601V, anda FF of78.4%)wasachievedemployingthe PEDOT:PSS/AgNW/GOcompositeTCEs with a AgNW suspensionconcentrationof 3.5mg/mL. It is worth noting that thisresultis alsoconsistentwiththe maximum Φ TC value of the PEDOT:PSS/AgNW/GOcomposite TCEs fabricated from 3.5 mg/mL AgNWconcentration. The reference device based on the PE-DOT:PSS/AgNW TCE with the sameAgNW concentrationexhibiteda lower PCE of 11.6%(with a Jsc of 28.3 mA/cm2, aVoc of 0.579 V and a FF of 70.9%),which may be partiallycausedby the largeroughnessof thepristine AgNW mesh.Theperformanceof the referencedeviceswas consistentwith thepreviousresultswhere nanostructuredsilicon substrateswereemployed as photoactive layers and PEDOT:PSS/AgNWsacted as TCEs.8 We believethat the higher e? ciency of thehybrid solarcell basedon PEDOT:PSS/AgNW/GO compositeTCE can be attributed to the more e? cient chargecarriercollection and transfer, wherein the AgNW networks weree?ectivelyweldedby GO nanosheets.Though electrical conductivity has been improved usingcompositeelectrodewith and without GO coverage,similarJscwasobtainedfor those two typesof devices.Accordingto theEQE spectraof hybrid solar cells as shown in Figure 3c, thecalculatedJsc was27.8and 27.7mA/cm2 for the deviceswithPEDOT:PSS/AgNWelectrodesandPEDOT:PSS/AgNW/GOcompositeelectrodes,respectively.The integratedJsc valuesarein good accordance with those extracted from the J- Vcharacteristics.EQE spectraare closely correlatedwith bothoptical and electricalcharacteristicsof the solar cells,suchaslight trapping and electrode conductivity, as well as chargeseparationandtransferin the devices.As shownin FigureS2din the SupportingInformation,re?ectanceis almostthe samefor the PEDOT:PSS/AgNW ?lms with or without GO,indicating that light re?ection is not the main reasonfor PVperformancedi?erence.On the other hand,we comparedlighttransmittance of the PEDOT:PSS/AgNW ?lms and thePEDOT:PSS/AgNW/GO ones, as shown in Figure S2c inthe SupportingInformation.This analysiscon?rmsthat for thedeviceswith PEDOT:PSS/AgNW/GO composite TCEs, theslightdecreaseof EQE at the wavelengthsshorterthan600nmis causedby the light absorptionof GO. The improvementatlonger wavelengthsis ascribedto enhancedchargetransportand collection in the GO-coveredTCEs. Finally, almost thesamephotocurrentsareachievedin the both cases.In addition, the Voc of the hybrid solar cells withPEDOT:PSS/AgNWelectrodesis slightly improvedwith GOcoating.We speculatedthat PEDOT:PSSWF wasrelatedwithFigure 4. (a) Surfacepotential pro?le of the PEDOT:PSS?lm with (left part) and without (right part) GO. (b) 1/ C2- V plots of the hybrid solarcells basedon AgNW and AgNW/GO TCEs with 3.5 mg/mL AgNWs.ACS Applied Materials Nowlan, M. J. CrystallineSilicon Photovoltaics:theHurdle for Thin Films. Prog.Photovolt.:Res.Appl. 1997, 5, 309- 315.(2) Fthenakis,V. M.; Kim, H. C. Photovoltaics:Life-Cycle Analyses.Sol.Energy2011, 85, 1609- 1628.(3) Chen, T. G.; Huang, B. Y.; Chen, E. C.; Yu, P.; Meng, H. F.Micro-Textured Conductive Polymer/Silicon Heterojunction Photo-voltaic Devices with High Efficiency. Appl. Phys.Lett. 2012, 101,033301.(4) Avasthi,S.; Lee,S.;Loo, Y. L.; Sturm, J.C. Role of Majority andMinority Carrier Barriers Silicon/Organic Hybrid HeterojunctionSolar Cells. Adv. Mater.2011, 23, 5762- 5766.(5) He, L.; Jiang,C.; Wang,H.; Lai, D. Rusli.High EfficiencyPlanarSi/Organic Heterojunction Hybrid Solar Cells.Appl. Phys.Lett. 2012,100, 073503.(6) Zhang,F.; Sun,B.; Song,T.; Zhu, X.; Lee,S.Air Stable,EfficientHybrid Photovoltaic Devices Basedon Poly(3-hexylthiophene) andSilicon Nanostructures.Chem.Mater. 2011, 23, 2084- 2090.(7) Shiu, S.-C.; Chao, J.-J.; Hung, S.-C.; Yeh, C.-L.; Lin, C.-F.Morphology Dependence of Silicon Nanowire/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)Heterojunction SolarCells. Chem.Mater. 2010, 22, 3108- 3113.(8) Chen, T. G.; Huang, B. Y.; Liu, H. W.; Huang, Y. Y.; Pan,H. T.;Meng, H. F.; Yu, P. Flexible Silver Nanowire Meshes for High-efficiency Microtextured Organic-Silicon Hybrid Photovoltaics. ACSAppl. Mater. Interfaces2012, 4, 6857- 6864.(9) Liu, Q.; Ono, M.; Tang, Z.; Ishikawa, R.; Ueno, K.; Shirai, H.Highly Efficient Crystalline Silicon/Zonyl Fluorosurfactant-TreatedOrganic Heterojunction Solar Cells. Appl. Phys. Lett. 2012, 100,183901.(10) Jeong,S.;Garnett, E. C.; Wang, S.;Yu,Z.; Fan,S.; Brongersma,M. L.; McGehee,M. D.; Cui, Y. Hybrid Silicon Nanocone-PolymerSolar Cells. Nano Lett. 2012, 12, 2971- 2976.(11) Yu, P.; Tsai, C.-Y.; Chang,J.-K.;Lai, C.-C.; Chen, P.-H.; Lai, Y.-C.; Tsai, P.-T.; Li, M.-C.; Pan,H.-T.; Huang, Y.-Y.;Wu, C.-I.; Chueh,Y.-L.; Chen, S.-W.; Du, C.-H.; Horng, S.-F.; Meng, H.-F. 13%Efficiency Hybrid Organic/Silicon-Nanowire Heterojunction SolarCell via Interface Engineering.ACS Nano 2013, 7, 10780- 10787.(12) Liu, R.; Lee,S. T.; Sun, B. 13.8%EfficiencyHybrid Si/OrganicHeterojunction Solar Cells with MoO 3 Film as Antireflection andInversion Induced Layer. Adv. Mater. 2014, 26, 6007- 6012.(13) Liu, Z.; Wang,H.; Fung,M.-K.; Lee, C.-S.;Zhang, X.-H. Low-Cost Solar Cell Basedon a Composite of Silicon Nanowires and aHighly ConductiveNonphotoactive Polymer.Chem. Eur. J.2013, 19,17273- 17276.(14) Pudasaini,P. R.; Ruiz-Zepeda,F.; Sharma,M.; Elam,D.; Ponce,A.; Ayon, A. A. High Efficiency Hybrid Silicon Nanopillar-PolymerSolar Cells.ACS Appl. Mater.Interfaces2013, 5, 9620- 9627.(15) Liu, Q.; Khatri, I.; Ishikawa,R.; Fujimori, A.; Ueno, K.; Manabe,K.; Nishino, H.; Shirai, H. Improved Photovoltaic PerformanceofCrystalline-Si/Organic Schottky Junction Solar Cells Using Ferro-electric Polymers.Appl. Phys.Lett. 2013, 103, 163503.(16) Wu, Z.; Chen, Z.; Du, X.; Logan,J. M.; Sippel,J.;Nikolou, M.;Kamaras,K.; Reynolds,J. R.; Tanner, D. B.; Hebard,A. F.; Rinzler,A.G. Transparent, Conductive Carbon Nanotube Films. Science2004,305, 1273- 1276.(17) Ham, H. T.; Choi, Y. S.; Chee,M. G.; Cha, M. H.; Chung, I. J.PEDOT-PSS/SinglewallCarbon Nanotubes Composites.Polym.Eng.Sci.2008, 48, 1- 10.(18) Matyba, P.; Yamaguchi,H.; Chhowalla, M.; Robinson, N. D.;Edman, L. Flexible and Metal-Free Light-Emitting ElectrochemicalCells Basedon GrapheneandPEDOT-PSSasthe ElectrodeMaterials.ACS Nano 2010, 5, 574- 580.(19) Hong, W.; Xu, Y.; Lu, G.; Li, C.; Shi,G. TransparentGraphene/PEDOT- PSS Composite Films as Counter Electrodes of Dye-SensitizedSolarCells. Electrochem.Commun.2008, 10, 1555- 1558.(20) Lee, J.-Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-ProcessedMetal Nanowire Mesh Transparent Electrodes.Nano Lett.2008, 8, 689- 692.(21) Gaynor, W.; Lee, J.-Y.; Peumans,P. Fully Solution-ProcessedInverted Polymer Solar Cells with Laminated Nanowire Electrodes.ACS Nano 2009, 4, 30- 34.(22) Krantz, J.;Stubhan,T.; Richter,M.; Spallek,S.;Litzov, I.; Matt,G. J.;Spiecker,E.; Brabec,C. J.Spray-CoatedSilverNanowiresasTopElectrode Layer in Semitransparent P3HT:PCBM-Based OrganicSolar Cell Devices.Adv. Funct.Mater. 2013, 23, 1711- 1717.(23) Rathmell,A. R.; Bergin,S.M.; Hua, Y. L.; Li, Z. Y.; Wiley, B. J.The Growth Mechanism of Copper Nanowires and Their Propertiesin Flexible, Transparent Conducting Films. Adv. Mater. 2010, 22,3558- 3563.(24) Hecht, D. S.;Hu, L.; Irvin, G. EmergingTransparentElectrodesBasedon Thin Films of Carbon Nanotubes,Graphene,and MetallicNanostructures.Adv. Mater. 2011, 23, 1482- 1513.(25) Kim, A.; Won, Y.; Woo, K.; Kim, C.-H.; Moon, J. HighlyTransparent Low ResistanceZnO/Ag Nanowire/ZnO CompositeElectrode for Thin Film Solar Cells.ACS Nano 2013, 7, 1081- 1091.(26) Hu, L.; Kim, H. S.; Lee, J.-Y.; Peumans,P.; Cui, Y. ScalableCoating and Properties of Transparent, Flexible, Silver NanowireElectrodes.ACS Nano 2010, 4, 2955- 2963.(27) Liu, C. H.; Yu, X. Silver Nanowire-BasedTransparent,Flexible,and Conductive Thin Film. NanoscaleRes.Lett. 2011, 6, 75.(28) Garnett, E. C.; Cai, W.; Cha, J.J.;Mahmood, F.; Connor, S.T.;GreysonChristoforo, M.; Cui, Y.; McGehee,M. D.; Brongersma,M. L.Self-Limited Plasmonic Welding of Silver Nanowire Junctions. Nat.Mater. 2012, 11, 241- 249.(29) Song, T.-B.; Chen, Y.; Chung, C.-H.; Yang,Y.; Bob, B.; Duan,H.-S.;Li, G.; Tu, K.-N.; Huang, Y.; Yang,Y. NanoscaleJoule HeatingandElectromigration EnhancedRipeningof Silver Nanowire Contacts.ACS Nano 2014, 8, 2804- 2811.(30) Lee,J.;Lee,P.; Lee,H. B.; Hong, S.; Lee,I.; Yeo, J.;Lee,S. S.;Kim, T.-S.; Lee,D.; Ko, S.H. Room-TemperatureNanosolderingof aVery Long Metal Nanowire Network by Conducting-Polymer-AssistedJoining for a Flexible Touch-Panel Application. Adv. Funct. Mater.2013, 23, 4171- 4176.(31) Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans,P.Smooth Nanowire/Polymer Composite Transparent Electrodes.Adv.Mater. 2011, 23, 2905- 2910.(32) Xu, F.; Zhu, Y. Highly Conductive and Stretchable SilverNanowire Conductors. Adv. Mater.2012, 24, 5117- 5122.(33) Zhu, R.; Chung, C.-H.; Cha, K. C.; Yang, W.; Zheng, Y. B.;Zhou, H.; Song,T.-B.; Chen, C.-C.; Weiss,P. S.;Li, G.; Yang,Y. FusedSilver Nanowires with Metal Oxide Nanoparticles and OrganicPolymers for Highly Transparent Conductors. ACS Nano 2011, 5,9877- 9882.ACS Applied Materials Ham, J.;Lee,J.;Hong, S.;Han, S.;Suh,Y. D.; Lee,S.E.;Yeo,J.;Lee,S.S.;Lee,D.; Ko, S.H. Highly Stretchableor TransparentConductor Fabrication by a Hierarchical Multiscale Hybrid Nano-composite.Adv. Funct. Mater.2014, 24, 5671- 5678.(35) Liang,J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X.; Chen, Y.;Pei, Q. SilverNanowire Percolation Network Solderedwith GrapheneOxide at Room Temperatureand Its Application for Fully StretchablePolymer Light-Emitting Diodes. ACS Nano 2014, 8, 1590- 1600.(36) Hummers, W. S.; Offeman, R. E. Preparation of GraphiticOxide. J. Am. Chem.Soc.1958, 80, 1339- 1339.(37) Dikin, D. A.; Stankovich,S.; Zimney, E. J.; Piner, R. D.;Dommett, G. H.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S.Preparation and Characterizationof Graphene Oxide Paper. Nature2007, 448, 457- 60.(38) Tao, A.; Kim, F.; Hess,C.; Goldberger,J.; He, R.; Sun,Y.; Xia,Y.; Yang, P. Langmuir- Blodgett Silver Nanowire Monolayers forMolecular Sensing Using Surface-EnhancedRaman Spectroscopy.Nano Lett. 2003, 3, 1229- 1233.(39) Haacke,G. New Figureof Merit for TransparentConductors. J.Appl. Phys.1976, 47, 4086.(40) Pysch,D.; Mette, A.; Glunz, S.W. A Reviewand ComparisonofDifferent Methods to Determine the SeriesResistanceof SolarCells.Sol.EnergyMater. Sol.Cells2007, 91, 1698- 1706.(41) Chung, C. H.; Song,T. B.; Bob, B.; Zhu, R.; Duan, H. S.;Yang,Y. Silver Nanowire Composite Window Layers for Fully Solution-Deposited Thin-film Photovoltaic Devices. Adv. Mater. 2012, 24,5499- 5504.(42) Robertson, J. Band Alignment at Metal-Semiconductor andMetal-Oxide Interfaces.Phys.StatusSolidiA 2010, 207, 261- 269.(43) Palermo,V.; Palma,M.; Samorì,P. Electronic Characterizationof OrganicThin Films by Kelvin Probe ForceMicroscopy.Adv.Mater.2006, 18, 145- 164.(44) Miao, X.; Tongay,S.; Petterson,M. K.; Berke,K.; Rinzler,A. G.;Appleton, B. R.; Hebard, A. F. High Efficiency GrapheneSolar Cellsby Chemical Doping. Nano Lett. 2012, 12, 2745- 2750.(45) Ho, P. K. All-Polymer Optoelectronic Devices.Science1999,285, 233- 236.ACS Applied Materials & Interfaces Research ArticleDOI:10.1021/am508006qACSAppl. Mater. Interfaces 2015, 7, 3272- 32793279