Hangzhou_Hagfeldt_190924
Out of the Lab and Into Production: Perovskite Technology for Mass Production, Hangzhou, October 24 – 25 th , 2019 Compositional and Interface Engineering of Perovskite Solar Cells Anders Hagfeldt Laboratory of Photomolecular Sciences (LSPM) Dyenamo AB www.dyenamo.se Materials, research equipment , consultancy , etc , for solar cells and solar fuels . Journal of Materials Chemistry AEPFL’s most efficient pervoskite solar cells employ mixtures of organic cations and iodide /bromide as anion General composition FA 1-x MA x Pb(I 1-x Br x ) FA = R 1 – R 4 = H formamidinium MA = methylammonium X = 0.15 gives optimal results N. Pelletet al. , Mixed -Organic -Cation Perovskite Photovoltaics for Enhanced Solar -Light Harvesting. Angew . Chem. Int. Ed. 53, 3151-3157 (2014). N. J. Jeon et al. , Compositional engineering of perovskite materials for high-performance solar cells. Nat. 517, 476- 480 (2015). Simple tuning of the band gap by mixed compositions Mixing in Br increases band gap EES, Jacobsson et al., DOI: 10.1039/c6ee00030d Mixing in Sn decreases band gap JMC A, Anaya et al., DOI: 10.1039/c6ta04840d Opens up for multi- junction devices!Dongqin Bi Certified efficiency at Newport, 21.0%, Dec. 2015 (hysteresis- free) Voc = 1.13 V Jsc = 23.8 mA/cm2 FF = 0.78 PEC = 21.0 % Our Certified Champion Cell Certified world record is 25.2% Nature Energy DOI: 10.1038/NENERGY.2016.142A B Michael Saliba2016- 03-01 Michael Saliba , Triple Cations for Stability, Reproducibility and High Efficiency (submitted) Devices cross sectional SEM 6 Cs 0 M Cs 5 M Cs 5 M • More monolithically grown crystals (not seen before for MA/FA) Cs 5 M M. Saliba et al., Cesium- containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency , Energy & Environmental Science, 2016, DOI: 10.1039/C5EE03874J 2016- 03-01 Michael Saliba , Triple Cations for Stability, Reproducibility and High Efficiency (submitted) ACS Energy Lett. 2017, 2, 2686 − 26932016- 09-13, Michael Saliba , Multication perovskites9 Device results • Highest PCE: 21.6% stabilized • Highest V oc is 1.24 V (band gap: 1.63 eV) Close to theoretical limit (1.33 V). • Among lowest loss -in-potentials (for any PV material) • 4% External Radiative Efficiency (ERE, Electroluminescence ) • Towards GaAs!Stability tests Stability: 95% is retained after 500h of continous operation (MPP) at 85 o C and full illumination • Gold/spiro is not a stable contact at high temperatures ACS Nano DOI: 10.1021/acs.nano.6b02613 • PTAA Polymer as HTM Stress test: 85 o C, full illumination, MPP for 500h (in N2 atmosphere)11 Dr. Ji-Youn Seo Dr. Hui - Seon Kim Energy & Environmental Science 2018, 11, 2985 -29921 Seo , Ji - Youn , et al. Energy & Environmental Science (2018) cp/mp - TiO 2 perovskite spiro - MeOTAD Au FTO EFFICIENT PSC with Zn -TFSI 2EFFECT IN STABILITY 13 Shelf stability (ambient air, storage in dark) Seo, Ji -Youn, et al. Energy & Environmental Science (2018)Lumogen F Violet 570 by BASF Fluoropolymeric coating Stable cells under UV -light and humidity exposureFirst 3 months, Ar atmosphere. Next 3 months under air at 50% RH, In both cases under continuous UV irradiation Terrace of the Politecnico di Torino from October to December 2015 Fluoropolymeric Encapsulated Cells UV Exposure Outdoor testing UV -curable chloro -trifluoro -ethylene vinyl ether fluoropolymer binder and a dimethacrylicperfluoropolyether oligomer .What acceleratedtests are relevant for PSC? Domanski et al., Energy Environ. Sci ., 2017,10, 604-613 An initial reversible decay in efficiency Domanski et al., Nature Energy, 2018, 3, 61-67. The cycled device(6h on, 6h off) worked on average at 96% of its initial efficiency , whilethe one with continuous illumination at 88%Planar PSC Structures Flat amorphous SnO 2 ALD layer works better than flat amorphous TiO 2 ALD Layer -Band Alignment Engineering hole transporter Perovskite electron transporter J. -P. Correa Baena, L. Steier et al. Energy Environ. Sci. 2015, 8(10), 2928 -2934 , Stranks, NNANO (2015) TiO 2 SnO 2 X Perovskite Perovskite ESL FTO Perovskite HTL Au Simplest device structure . Fabrication temperatures 200 0 C. Flexible substrates .• Implicit goal: Pure FAPbI3 . (ideally no MA and Br) • MA volatile in thin -films • Br blue-shifts the band gap disproportionately (not optimal for single -junction) • Rb , Cs, FA and I as candidates. (using K is next)MA -free, Br-free perovskitesPlanar : SnO 2 /PCBM,PMMA/ RbCsFA /PMMA/ spiro 25 mA/cm 2 20.4%Ultra -Hydrophobic 3D/2D Fluoroarene Bilayer -Based Water - Resistant Perovskite Solar Cells with Efficiencies Exceeding 22% Yuhang Liu, SeckinAkin , Linfeng Pan, Ryusuke Uchida, NehaArora , Jovana V. 5 Milic , Alexander Hinderhofer , Frank Schreiber, Alexander R. Uhl , Shaik M. 6 Zakeeruddin , Anders Hagfeldt, M. Ibrahim Dar, Michael Grätzel. accepted Forming a 9nm thick hydrophobic 2D layer between perovskite and HTM 2D A 2 PbI 4 perovskite layer employing pentafluorophenylethyl -ammonium (FEA) Increased lifetime and faster hole extraction TRPL for 3D and 3D/2D perovskite More than 2-fold increase in lifetime with the 2D layer (2550 ns compared to 950 ns ) TRPL with HTM spiro Faster holeextraction with 2D layerPerformance Best efficiency with 3D/2D at 22.1% Non -encapsulated cells. Continuous illumination, MPP, 40% humidityFlash Infrared Annealing (FIRA) 0 10 20 30 40 50 60 96 98 100 Hybrid/Spiro Hybrid/NiO x Inorganic/NiO x Power output (%) Time (min) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -5 0 5 10 15 20 25 J (mA/cm 2 ) V (V) Hybrid/Spiro Hybrid/NiO x Inorganic/NiO x ~10 ° C N O 2 Gas in Water in Water out Gas in Cold water flow Conductive glass SnO 2 Perovskite absorber NiO x SnO 2 :F IR LAMP Jsc (mA/cm 2 ) Voc (mV) FF ( %) 22.8 1100 73 18.4 910 66 7.8 1200 60 PCE= 18.3% PCE= 11.1% PCE= 5.6% a b c Outlook: R2R fabrication Schematic cross section of the FIRA setup Low temperature, Annealing time ∼ seconds 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 10 20 J (mA/cm 2 ) V (V) FIRA Antisolvent J sc (mA/cm 2 ) V oc (V) FF (%) PCE (%) FIRA 22.6 1.11 76 19.0 Ant. 22.7 1.15 74 19.2 21 22 23 J (mA/cm 2 ) 0 100 200 300 15 18 21 PCE (%) Time (s) a c b d FIRA Antisolvent Scan rate: 10 mV/s Active area: 0.16 cm 2 Spiro-OMeTAD Spiro-OMeTAD FTO FTO TiO 2 TiO 2 Perovskite Perovskite Regular architecture/TiO 2 meso Planar architectureThanks! Michael Grätzel LSPM Anand Agarwalla Fatemeh Ansarii Saeid Asgary Brian Carlsen Bitao Dong Natalie Flores Diaz Firouzeh Ebadi Garjan Natalie Flores Diaz Mozhdeh Forouzandeh Hui-Seon Kim Kazuteru Nonomura Haizhou Lu Linfeng Pan LPI Team Faranak Sadegh Yasemin Saygili Wolfgang Tress Nick Vlachopoulos Zaiwei Wang Zishuai Wang Bowen Yang Shaik Zakeeruddin Jiahuan Zhang Special thanks! Antonio Abate Juan -Pablo Correa-Baena Michael Saliba