Hangzhou_Hagfeldt_190924
Out of the Lab and Into Production Perovskite Technology for Mass Production, Hangzhou, October 24 – 25 th , 2019 Compositional and Interface Engineering of Perovskite Solar Cells Anders Hagfeldt Laboratory of Photomolecular Sciences LSPM Dyenamo AB www.dyenamo.se Materials, research equipment , consultancy , etc , for solar cells and solar fuels . Journal of Materials Chemistry AEPFL’s most efficient pervoskite solar cells employ mixtures of organic cations and iodide /bromide as anion General composition FA 1-x MA x PbI 1-x Br x FA R 1 – R 4 H formamidinium MA methylammonium X 0.15 gives optimal results N. Pelletet al. , Mixed -Organic -Cation Perovskite Photovoltaics for Enhanced Solar -Light Harvesting. Angew . Chem. Int. Ed. 53, 3151-3157 2014. N. J. Jeon et al. , Compositional engineering of perovskite materials for high-performance solar cells. Nat. 517, 476- 480 2015. Simple tuning of the band gap by mixed compositions Mixing in Br increases band gap EES, Jacobsson et al., DOI 10.1039/c6ee00030d Mixing in Sn decreases band gap JMC A, Anaya et al., DOI 10.1039/c6ta04840d Opens up for multi- junction devicesDongqin Bi Certified efficiency at Newport, 21.0, Dec. 2015 hysteresis- free Voc 1.13 V Jsc 23.8 mA/cm2 FF 0.78 PEC 21.0 Our Certified Champion Cell Certified world record is 25.2 Nature Energy DOI 10.1038/NENERGY.2016.142A B Michael Saliba2016- 03-01 Michael Saliba , Triple Cations for Stability, Reproducibility and High Efficiency submitted Devices cross sectional SEM 6 Cs 0 M Cs 5 M Cs 5 M More monolithically grown crystals not seen before for MA/FA Cs 5 M M. Saliba et al., Cesium- containing Triple Cation Perovskite Solar Cells Improved Stability, Reproducibility and High Efficiency , Energy Environmental Science, 2016, DOI 10.1039/C5EE03874J 2016- 03-01 Michael Saliba , Triple Cations for Stability, Reproducibility and High Efficiency submitted ACS Energy Lett. 2017, 2, 2686 − 26932016- 09-13, Michael Saliba , Multication perovskites9 Device results Highest PCE 21.6 stabilized Highest V oc is 1.24 V band gap 1.63 eV Close to theoretical limit 1.33 V. Among lowest loss -in-potentials for any PV material 4 External Radiative Efficiency ERE, Electroluminescence Towards GaAsStability tests Stability 95 is retained after 500h of continous operation MPP at 85 o C and full illumination Gold/spiro is not a stable contact at high temperatures ACS Nano DOI 10.1021/acs.nano.6b02613 PTAA Polymer as HTM Stress test 85 o C, full illumination, MPP for 500h in N2 atmosphere11 Dr. Ji-Youn Seo Dr. Hui - Seon Kim Energy Environmental Science 2018, 11, 2985 -29921 Seo , Ji - Youn , et al. Energy Environmental Science 2018 cp/mp - TiO 2 perovskite spiro - MeOTAD Au FTO EFFICIENT PSC with Zn -TFSI 2EFFECT IN STABILITY 13 Shelf stability ambient air, storage in dark Seo, Ji -Youn, et al. Energy Environmental Science 2018Lumogen F Violet 570 by BASF Fluoropolymeric coating Stable cells under UV -light and humidity exposureFirst 3 months, Ar atmosphere. Next 3 months under air at 50 RH, In both cases under continuous UV irradiation Terrace of the Politecnico di Torino from October to December 2015 Fluoropolymeric Encapsulated Cells UV Exposure Outdoor testing UV -curable chloro -trifluoro -ethylene vinyl ether fluoropolymer binder and a dimethacrylicperfluoropolyether oligomer .What acceleratedtests are relevant for PSC Domanski et al., Energy Environ. Sci ., 2017,10, 604-613 An initial reversible decay in efficiency Domanski et al., Nature Energy, 2018, 3, 61-67. The cycled device6h on, 6h off worked on average at 96 of its initial efficiency , whilethe one with continuous illumination at 88Planar PSC Structures Flat amorphous SnO 2 ALD layer works better than flat amorphous TiO 2 ALD Layer -Band Alignment Engineering hole transporter Perovskite electron transporter J. -P. Correa Baena, L. Steier et al. Energy Environ. Sci. 2015, 810, 2928 -2934 , Stranks, NNANO 2015 TiO 2 SnO 2 X Perovskite Perovskite ESL FTO Perovskite HTL Au Simplest device structure . Fabrication temperatures 200 0 C. Flexible substrates . Implicit goal Pure FAPbI3 . ideally no MA and Br MA volatile in thin -films Br blue-shifts the band gap disproportionately not optimal for single -junction Rb , Cs, FA and I as candidates. using K is nextMA -free, Br-free perovskitesPlanar SnO 2 /PCBM,PMMA/ RbCsFA /PMMA/ spiro 25 mA/cm 2 20.4Ultra -Hydrophobic 3D/2D Fluoroarene Bilayer -Based Water - Resistant Perovskite Solar Cells with Efficiencies Exceeding 22 Yuhang Liu, SeckinAkin , Linfeng Pan, Ryusuke Uchida, NehaArora , Jovana V. 5 Milic , Alexander Hinderhofer , Frank Schreiber, Alexander R. Uhl , Shaik M. 6 Zakeeruddin , Anders Hagfeldt, M. Ibrahim Dar, Michael Grtzel. accepted Forming a 9nm thick hydrophobic 2D layer between perovskite and HTM 2D A 2 PbI 4 perovskite layer employing pentafluorophenylethyl -ammonium FEA Increased lifetime and faster hole extraction TRPL for 3D and 3D/2D perovskite More than 2-fold increase in lifetime with the 2D layer 2550 ns compared to 950 ns TRPL with HTM spiro Faster holeextraction with 2D layerPerformance Best efficiency with 3D/2D at 22.1 Non -encapsulated cells. Continuous illumination, MPP, 40 humidityFlash Infrared Annealing FIRA 0 10 20 30 40 50 60 96 98 100 Hybrid/Spiro Hybrid/NiO x Inorganic/NiO x Power output Time min 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -5 0 5 10 15 20 25 J mA/cm 2 V V Hybrid/Spiro Hybrid/NiO x Inorganic/NiO x 10 C N O 2 Gas in Water in Water out Gas in Cold water flow Conductive glass SnO 2 Perovskite absorber NiO x SnO 2 F IR LAMP Jsc mA/cm 2 Voc mV FF 22.8 1100 73 18.4 910 66 7.8 1200 60 PCE 18.3 PCE 11.1 PCE 5.6 a b c Outlook R2R fabrication Schematic cross section of the FIRA setup Low temperature, Annealing time ∼ seconds 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 10 20 J mA/cm 2 V V FIRA Antisolvent J sc mA/cm 2 V oc V FF PCE FIRA 22.6 1.11 76 19.0 Ant. 22.7 1.15 74 19.2 21 22 23 J mA/cm 2 0 100 200 300 15 18 21 PCE Time s a c b d FIRA Antisolvent Scan rate 10 mV/s Active area 0.16 cm 2 Spiro-OMeTAD Spiro-OMeTAD FTO FTO TiO 2 TiO 2 Perovskite Perovskite Regular architecture/TiO 2 meso Planar architectureThanks Michael Grtzel LSPM Anand Agarwalla Fatemeh Ansarii Saeid Asgary Brian Carlsen Bitao Dong Natalie Flores Diaz Firouzeh Ebadi Garjan Natalie Flores Diaz Mozhdeh Forouzandeh Hui-Seon Kim Kazuteru Nonomura Haizhou Lu Linfeng Pan LPI Team Faranak Sadegh Yasemin Saygili Wolfgang Tress Nick Vlachopoulos Zaiwei Wang Zishuai Wang Bowen Yang Shaik Zakeeruddin Jiahuan Zhang Special thanks Antonio Abate Juan -Pablo Correa-Baena Michael Saliba