Cu(In,Ga)(Se,S)2吸收剂元素硒-硫溅射前体在30x30平方厘米上的退火优化
Optimization of Cu(In,Ga)(Se,S)2 absorbers by elemental selenium-sulfur annealing of sputtered precursors on 30x30 cm2 Maarten van der Vleuten, Mirjam Theelen, Marcel Simor, Rémi Aninat, Henk Steijvers, Robert Meertens, Karine van der Werf, Hans Linden, Dong Zhang, Hero ‘t Mannetje SNEC, June 4th, 2019 Introducing Solliance Solliance building Genk ForschungsZentrum Jülich Solliance - FZJ EnergyVille Genk Solliance - imec GermanySolliance Building Eindhoven High Tech Campus Eindhoven Solliance - TNO Solliance: Cross-border R&D collaboration on thin film PV: Netherlands - Belgium - Germany Solliance research partners Partners in research and industry SNEC 2019 Solliance industry partners Materials Equipment suppliers PV Manufacturers End users part of Solliance facility Netherlands SNEC 2019 ▪ Semi-industrial R&D line CIGS and Perovskites ▪ Co-operation with world’s leading CIGS companies for process development ▪ 30x30 cm2 CIGS (started 2014) Champion Cells various technologies ▪ Efficiency : Perovskites & CIGS in between mc-Si and c-Si ▪ Maturity (MRL) : Perovskites 12 GWp will be installed • 8.35 GWp CIGS (CNBM-Avancis, Sunflare, Hanergy, CHN energy-Manz), 4 GWp CdTe Special absorber formation processStand rd sputt red precursorIn CuGa Our baseline CIGS Stack build-up SNEC 2019 Cu(In,Ga)(Se,S)2 CdS i-ZnO Al:ZnO Molybdenum Soda lime glass Standard sputtered TCO Standard glass Standard wet-chemical buffer Standard sputtered back-contact Selenisation platform SNEC 2019 • Elemental Se instead of H2Se : low OPEX • Non-vacuum, in-line processing : low CAPEX • Unique freedom of process : • Full control over Se and S vapor supply during each process step Mass production systemR&D system similar to system at Solliance CIGS Bandgap SNEC 2019 Source : Huang et al.(TSMC 2016) ▪ Optimum bandgap for CIGS : 1.10 eV - 1.25 eV range ▪ Bandgap of pure CuInSe2 = 1.00 eV, Ga and S are needed for raising bandgap ▪ Good CIGS material has a double bandgap grading with ▪ Increased bandgap at surface by higher S content ▪ Increased bandgap at back with higher Ga content CIGS (overview NREL 2012) 23% world record Absorber formation 1. Well known problem sequential CIGS : Phase separated CuInSe2/CuGaSe2 cell with 1.00 eV minimum bandgap 2. With high thermal budget, move Gallium to the front for higher minimum bandgap of 1.10 eV 3. Add sulfur to the front for targeted minimum bandgap of 1.15 eV and a double bandgap grading 1 Voc max = 550 mV 2016 2 Voc max = 610 mV 2017 3 Voc max = 700 mV 2018 SNEC 2019 Absorber formation process Mixing of metals Selenisation and Gallium migration* Surface sulfurisation Low SeNo Se High Se G la s s M o ly b d e n u m C u G a In SNEC 2019 * Gallium migration only with specific conditions Gallium migration to surface SNEC 2019 M ix in g o f m e ta ls Se le n is a ti o n a n d g a lliu m tr a n s p o r t Su r fa c e s u lfu r is a ti o n Lo w SeN o Se H i g h Se ▪ Medium Thermal budget ▪ A bit of Gallium at surface ▪ Min. bandgap : 1.08 eV Ga ▪ High Thermal budget ▪ Plenty Gallium at surface ▪ Min. bandgap : 1.15 eV Ga GD-OES analysis by HZB-PVCOMB (Berlin) ▪ Low Thermal budget ▪ No Gallium at surface ▪ Min. bandgap : 1.00 eV Ga surface Varying thermal budget Full bandgap control SNEC 2019 0 0 . 2 0 . 4 0 . 6 0 . 8 1 3 0 0 5 0 0 7 0 0 9 0 0 1 1 0 0 1 3 0 0 E Q E W a velen gth / n m l o w t h e r ma l b u d g e t , No S l o w t h e r ma l b u d g e t , me d i u m S me d i u m t h e r ma l b u d g e t , n o S h e a v y t h e r ma l b u d g e t , n o S h e a v y t h e r ma l b u d g e t , me d i u m S h e a v y t h e r ma l b u d g e t , h e a v y S ▪ Increasing bandgap with higher thermal budget and heavier Sulphurization : 1.00 eV → 1.17 eV Increasing bandgap Internal records SNEC 2019 ▪ Highest Voc: 701 mV ▪ All steps : industrial processing on 30x30 cm2 format Electrodeposited precursor (2014-2017) Sputtered precursor (since Q4 2017) Efficiency 15.4 % 16.4 % Voc 632 mV 645 mV Jsc 34.8 mA/cm2 35.4 mA/cm2 FF 70 % 72 % 30 cm 30 cm CIGS-Perovskite Tandem SNEC 2019 ▪ May 2019 Fully in-house sequential CIGS-Perovskite tandem cell : 23.8% 400 600 800 1000 1200 1400 0.0 0.2 0.4 0.6 0.8 1.0 1.2 EQE Wavelen gth (nm) Si ng le CIGS (35 .0 m Ac m -2 ) Fi lt ere d CIGS (15 .2 m Ac m -2 ) PSC (21 .0 m Ac m -2 ) 4T (3 6.2 mA c m -2 ) CIGSPerovskite ▪ Jan 2019 Flexible tandem with Solliance Perovskite on top of Miasolé (Hanergy) CIGS cell : 21.5% Conclusions SNEC 2019 Outlook ❖ Improvement buffer, TCO and alkali addition ❖ Transfer process to CIGS on flexible substrates ❖ Industrial low-cost CIGS absorber formation ❖ Unique bandgap control by Gallium and Sulphur depth control ❖ Voc values up to 700 mV For more info, contact us via Wechat: SNEC 2019 ▪ Via e-mail: ronnieli@brainport.site (Chinese) • Hans.linden@solliance.eu (English) • Maarten.vandervleuten@solliance.eu (English) For more Solliance work, please visit the Scientific conference session 4 (Wednesday 10:45 – 12:15) : ▪ 27% efficient 4-terminal tandem with highly transparent perovskite top cell and back-contacted Si heterojunction bottom cell (Dong Zhang) ▪ Back-end interconnection for CIGS modules (Veronique Gevaerts, presented by Maarten van der Vleuten) Welcome for cooperation !