5聚合物在纳米太阳能电池中的应用研究080911.pdf
第 20卷第 6期 高分子材料科学与工程 V ol . 20, No. 62004年 11月 PO L Y ME R MA T E RI A L SS CI EN CEA N D EN G I N EER I NG N ov== = = = = = = = = = = = = = = = = = = = = = = = = = = == = = = = = = = = = = = = == = = = = = = = = = = = = == = = =.2 004导电聚合物在纳米太阳能电池中的应用研究 *郝彦忠 1, 2, 武文俊 2, 康志敏 1( 1 . 河北科技大学理学院 ;2 . 河北科技大学化学与制药工程学院 , 河北 石家庄 0 50 01 8)摘要 : 导电聚合物以其特殊的性质及种种优点而越来越广泛地应用于光电化学太阳能电池 , 文中主要介绍了导电聚合物作为全固态太阳能电池的电解质以 及 作 为 纳 米 光 电 化 学 太 阳 能 电 池 敏 化 剂 的 应 用 研究 。关键词 : 导电聚合物 ; 光电化学 ; 纳米结构太阳能电池中图分类号 : O631. 2+ 3 文献标识码 : A 文章编号 : 1000-7555( 2004) 06-0046- 05自 1991年以瑞士 M . Gr at zel 教授为首的研究小组报道以来 , 基于染料敏化的 T iO 2纳米晶可再生光电化学太阳能电池 , 以其低廉的价格 、简易的制备工艺引起全世界的关注 。 染料敏化纳米晶 T iO 2太阳能电池 ( nc-DSCs) 的工作原理与 基 于 传 统 半 导 体 的 商 用 太 阳 能 电 池 大 不 相同 。 在工作电极上烧结几微米厚的 T iO 2纳米粒子膜作为电子受体和传导层 , 并覆盖一层联吡啶钌染料吸收光和把电子注入到 T iO 2导带 。 电解质溶液 -- 乙腈或包含 I - / I -3 氧化还原对的乙二醇碳酸酯和碳酸丙烯酯混合物 -- 作为氧化还原媒介使光激染料还原 。 据报道在 A M 1. 5标准太 阳 光 ( 比 如 : 1000 W / m 2) 照 射 下 光 电 转换率高达 10%~1 1% [ 1] 。此 后 人们又 在 寻 找 新的 敏 化 剂 [ 2] , 提 高 膜的 光 吸 收 性 [ 3] , 阻 止 电 荷 的 复 合 [ 4] , 提 高 界 面能 [ 5] , 改变 纳米 粒 子 形 态 [ 6] 等 方 面 做 了 大 量 的工作 。 其中包括对基于导电聚合物的纳米光电化学电池的研究 , 主要集中在两个方面 : 作为全固态太阳能电池中的固体电解质和纳米结构光电化学电池敏化剂 。相继报道的用在纳米太阳能电池的导电聚合物有聚 3- 甲基噻吩 [ 7] 、 聚对苯撑乙烯 [ 8] 、 聚苯胺 [ 9] 、 聚吡咯 [ 10] 、 聚邻甲氧基苯胺 [ 11] 和聚 ( 3- 十一烷基 -2, 2 - 并噻吩 ) [ 12 ] 等 。1 导电聚合物作为全固态太阳能电池中的固体电解质的应用研究染 料 敏 化 纳 米 晶 T iO 2 太 阳 能 电 池 在 表 现出优良的光电化学行为的同时 , 也存在着一系列科学和技术的问题需要解决 。 其中 , 作为空穴传输材料的电解液就存在以下问题 [ 11] : 1) 电池的封装技术难度增大 , 密封剂可能与电解质反应 ; 2) 溶 剂 会 挥 发 , 且易导致染料的脱附和降解 ; 3) 载 流 子 的 迁移速率慢 , 在强光下光电流不 稳 定 ; 4) 除 了 氧化还原循环反应外 , 电解质还存在不可逆反应 。 这些问题不但导致了电池的不稳定和使用寿命的缩短 , 也在很大程度上限制了光电化学太阳能电池的商业应用 , 因此 ,目 前 对 染 料敏 化纳 米晶 T iO2 太 阳 能 电 池 的 研究主要集中在用固态类似物来取代液体电解质( 如 : 由空穴传导物质来取代 ) , 以解决封装与降解等问题 。由于导电聚合物是一种有机半导体材料 ,它的带隙在 1. 5 eV ~3 eV 之间 , 符合制造光电器件的要求 [ 1 3] 。 再加上其低廉的价格和便于化学加工等特点 , 有望用来取代液体电解质 。 在这种光电化学装置中 , 导电聚合物既作敏化剂又作空穴传输材料 [ 14] 。相关报道已很多 , Cao 等人 [ 15] 首先报道了T i O2 / Ru L 2 ( SCN ) 2 / Poly merG el 结 构 的 染 料* 收稿日期 : 20 03- 11 - 13 ; 修订日期 : 2 004 - 0 7-2 0作者简介 : 郝彦忠 ( 1967-) , 男 , 博士 , 教授 .敏化全固态太阳能电池 , 也算染料敏化异质结电 池 ( DSH ) , 其短路电流 I sc=3 mA / cm2 , 开路电 压 V oc= 600 m V , 光 电 转 换 率 η = 3%~ 5%( 白光 , 30 W / m 2) 。 而 且 , 由 于 导 电 聚 合 物 良 好的 稳 定 性 , 使 电 池 的 寿 命 与 nc-DSCs 电 池 相当 。 但 是 , 入射 单色 光 的 光 电 转 换 效 率 ( I PCE )最高只达到 37%, 他们认为是聚合物与染 料 未完全接触造成的 , 也就是说 , 聚合物不能良好地填充多孔 T iO 2的表面 。研究者们也在不断尝试各种导电聚合物的应 用 , G ebeyehu [ 1 6] 等 以 无 机 T iO 2 纳 米 粒 子 为电子 传 输 材料 , 以 聚 3-辛 基噻 吩 为 空穴 传输 材料 , 以光敏性染料为吸光和电子注入材料组装了异质结全固态纳米太阳能电池 , 在 A M 1. 5的80 m W / cm2模拟太阳光的照射下 , 得到的开路电 压 V oc = 650 mV , 短 路 电 流 I sc = 450 μ A /cm2 , 总 体 光 电 转 换 效 率 η = 0. 16%。 随 着 三 组分 结 构 ( 有机染 料 , 导 电 聚 合 物 和 T iO 2 纳 米 晶粒子 ) 全固态太阳能电池组成的优化 , 光电转换率有望得到进一步的提高 。 李卫华 [ 1 7] 等又首次研 究 了 纳 米 结 构 ZnO/ 染 料 / 聚 吡 咯 光 电 化 学太 阳 能 电 池 , 得 到 了 I sc = 0. 562 m A , V oc =0. 623 V , f f = 0. 754, η = 1. 3% 的 初 步 试 验 结果 , 认为影响光电转换效率和填充因子的因素为导电玻璃的方块电阻 、 Zn O 纳米晶膜的厚度等 。 N ans 等 [ 1 8] 在 导 电 聚 合 物 固 态 太 阳 能 电 池中使用了无机染料 , 并指出染料浓度对体系的影响 。总之 , 可以从染料阳离子接 受 空 穴并 提 高光 电 转 换 率 的 导 电 聚 合 物 是 染 料 敏 化 纳 米 晶T iO2 太阳能电池液体电解质的潜在取代物 , 但其 必须满足 [ 1 9] : 1) 在染料的吸收光谱范围 内 ,导电聚合物必须有充分的透明性 ; 2) 导电聚合物 在 沉积 聚合时必 须 保 证 不 能 使 T iO 2 纳 米 晶上的单层染料溶解或降解 ; 3) 染料的激发态能级 ( S* ) 应高于 T iO 2的导带能级 , 基态能级 ( S 0 )须低于导电聚合物的价带上沿 。 这是电子从激发 态 染料 向 T iO2 导带 的 传 输 和 空 穴 向 导 电 聚合物的价带传输的必要条件 ; 4) 导电聚合物必须具有足够高的电荷传输迁移率 。2 导电聚合物敏化纳米结构光电化学电池的应用研究在 染 料 敏 化 纳 米 晶 T iO 2太 阳 能 电 池 ( nc-DSCs) 中 , 许多染料在近红外区的吸收很弱 , 其吸收光谱不能与太阳光谱很好地配合 , 且选择和制备比较困难 , 再加上现在公认使用效果最好的 R uL 2 ( SCN ) 2( L 代表 4, 4 - 二羧基 - 2, 2 -联吡啶 ) 的制备过程比较复杂 , 而钌本身又是稀有金属 , 因而价格比较昂贵 , 来源也比较困难 。 由于多数共轭导电聚合物如聚乙炔 ( PA ) 、 聚吡咯( Ppy ) 、 聚苯胺 ( Pan ) 、 聚噻吩 ( PT h) 、 聚对苯撑乙 烯 ( PPV ) 等 , 在近红外及可见光区有很大吸收 , 且稳定性好 , 具有导电率高 、 易于制备及掺杂 、 电化学可逆性强等特点 , 于是人们开始研究以导电聚合物取代染料 , 集光吸收和电荷传输功能 于 一体 , 直 接 敏 化 宽 禁 带 半 导 体 如 T iO 2 ,Zn O 等 [ 2 0] 。 在 这 里 , 影 响 光 电 转 换 率 的 因 素 主要包括导电聚合物中的电子空穴对的寿命和扩散系数 , 界面电荷的分离和复合速率 , 电荷传递速率 , 光电荷产生所依赖的波长等 。2. 1 聚邻甲氧基苯胺Nogueir a[ 2 4] 等 研 究 了 基 于 对 甲 苯 磺 酸 掺杂 的 聚邻 甲氧 基苯胺敏化 纳 米 结 构 T iO2 太 阳能电极 , 分别组装了以环氧氯丙烷和环氧乙烷的共聚物为固体电解质的全固态光电化学电池和 以 0. 01 m ol/ L 的 ( C 4H 9 ) 4N BF 4的 干 馏 乙 腈溶液为电解质的光电化学电池 , 通过光电流的测试 , 表明对甲苯磺酸掺杂的聚邻甲氧基苯胺在可见光区对 T i O2有明显的敏化作用 , 尽管光电转换率特别低 , 但他们的研究成果从侧面证明了 , 导电聚合物对甲苯磺酸掺杂的聚邻甲氧基 苯 胺 作 为 敏 化 剂 来 取 代 n c-DSCs 电 池 中 的染料的可行性 。2. 2 聚噻吩及其衍生物目前国内外对聚噻吩光电化学的研究进行了大量报道 , 但尚处于起步阶段 , 相关报道主要集中在不同取代基的噻吩以及并噻吩或二联 、三联噻吩的聚合物的光电化学的研究 。Nogueir a 等 [ 7] 用聚 3-甲 基 噻 吩 ( PMe T ) 来敏化纳米结构 T i O2太阳能电极 , 虽然在组装的全固态太阳能电池中 , 只得到 2. 3×1 0- 2 % 的光电转换率 , 但他们研究发现不仅入射单色光的光电转换效率 ( I PCE) 有所提高 , 而且还发现有效波长的范围向红外区扩展 , PMe T | T i O2界面加 快了 电子 从 T iO 2层到电解 质 界 面 和 空 穴 通74第 6期 郝彦忠等 : 导电聚合物在纳米太阳能电池中的应用研究过 PMe T 层 的 传 递 , 阻 止 了 电 子 -空 穴 对 的 复合 。 这在以前的研究中是未发现的 。Sem enik hin[ 21] 等研究了聚 3-甲基噻吩和聚并噻吩在存在和不存在阴极掺杂的电化学和光电 化 学 行为 。 Mi caron i[ 22] 等 用锁 定 放大 器 和 电化学阻抗谱对聚 3-甲基噻吩和电解质的界面电容进 行 了 研究 , 又 研 究了 聚 3- 甲 基 噻吩 的光 电化学响应 , 通过光电流对单色光频率的依赖性发现聚 3- 甲基噻吩与无机半导体相比光响应时间较 长 , 并 得出 与 吸 收光 谱 相 同的 3-甲基 噻 吩的 带 隙 数 据 -- 1. 9 eV 。 聚 ( 3- ( 4- 辛 苯 基 ) 噻吩 ) ( POPT ) , 由 于 在 光 照 下 产 生 了 阴 极 电 流 ,表 明 它 为 p -型 半 导 体 。 G irot t o 等 [ 23 ] 研 究 了 合成温度和烷基取代基的长度对聚连三噻吩光电化 学 性 质 的 影 响 。 另 外 , 还 有 对 聚 3-甲 基 噻吩 [ 7] 、 聚并噻吩 [ 24 ] 等的光电化学性质研究的相关报道 。研究还表明聚噻吩及其取代物作为半导体物质 , 体现出一系列有趣的性质 。 在电子和光电装置中用作活性物质 , 如发光二极管 、 场效应晶体管和全固态光电化学电池等 。 它的成本低 、 质轻 、 易于加工 、 易于大面积铺展和可通过分子工程设计的可能性等特点使它有可能取代传统的无机半导体 。 并且发现在光照的情况下它们有很好的稳定性 , 在电磁波谱中的可见光区有很强的吸收 [ 25 ] 。2. 3 聚苯胺酸 掺 杂 的 聚 苯 胺 膜 在 红 外 区 有 很 强 的 吸收 , 在 红 外 线 的 激 发 下 能 产 生 光 电 流 。 K im 等认 为 从非 键孤对电 子 状 态到 导 带 的 n-π * 2 eV跃迁 , 能使 2 eV 光子把载流子注入到聚苯胺导带中 。 他们通过 2 eV 光激发聚苯胺得到了光电流 。 在前人对聚苯胺光电化学性质研究的基础上郝彦忠 [ 26 ] 等又首次报道了对纳米尺度 T iO 2 /聚苯胺多孔膜电极光电化学的研究 , 通过电化学聚合的方法制得本征聚苯胺 , 然后又滴加到制备好的纳米结构 T i O2多孔膜电极上 , 并用盐酸掺杂 , 制备成 T iO2 / 聚苯胺多孔膜电极 , 利用瞬态光电流和循环伏安法进行了表征 , 表明聚苯 胺对 纳 米 结构 T iO 2多 孔 膜 有 一 定 的 敏 化 作用 , 并使光电流扩展到可见和红外区 。2. 4 聚吡咯聚 吡 咯 膜 相 当 于 半 导 体 , 也 具 有 能 带 结构 [ 27] 。 其 导 带 沿 位 置 ( E g = -2 . 15 eV ) 高 于T i O2 多孔膜导带沿位置 ( E g =-4 . 0 eV ) , 且在可见和近红外区有很强的吸收 。 柳闽生 [ 28] 等对纳米尺度 T iO 2 / 聚吡咯多孔膜电极光电化学进行了研究 , 利用光电流作用谱 、 光电流 ~ 电势图和 U V -V is 光谱对 T iO 2/ 聚吡咯多孔膜电极在不含氧化还原对和含不同氧化还原体系电解质溶液中的光电转换过程进行了研究 。 研究表明 ,T i O2 / 聚吡咯多孔膜电极为双层 n 型半导体结构 , 内层 T iO 2多孔膜的禁带宽度为 3. 26 eV , 外层聚吡咯的膜的禁带宽度为 2. 2 eV 。 用导电聚合物修饰半导体电极可使可见光吸收增加 , 光电 流 增 强 , 光 电 流 起 始 波 长 红 移 至 > 600 nm ,使 宽 禁 带 半 导 体 电 极 的 光 电 转 换 效 率 得 到 改善 。Mu r ak osh i 等人 [ 29] 将含有 0. 1 m ol/ L 的吡咯和 0. 1 mol / LL iClO 4 的丙酮溶液在 500 W 氙灯照射下 , 利用光电沉积法将所有的吡咯单体聚合沉积于染料吸附的 T iO 2纳米晶膜上 。 实验证明对聚吡咯 ( PPy ) 膜的光电性质的影响因素有以下几个方面 : 1) 电聚合的电极电势 , PPy 膜的光响应随聚合电极电势的增加而降低 , 实验中 , PPy 膜在 -3 00 m V 电势下光响应最大 ; 2)电 荷 密 度 的 影 响 , 在 低 于 100 m c/ cm 2时 , PPy膜的光响应随电荷密度的增大而增大 , 但当电荷密度增大到 150 mc/ cm2 , 光响应反而呈下降趋势 , 其原因可能是当电荷密度增大时 , 电聚合得 到 的 PPy 膜 厚 度 增 加 , 且 呈 黑 色 , 因 此 应 当选 择适当的电荷密度 ; 3) PPy 膜的电传导性能受 掺 杂 离 子 的 影 响 , 如 果 电 聚 合 过 程 在 0. 2mol/ L 的 L iClO 4 溶液中进行 , 就可以加快所制得的 PPy 膜的电荷传输速度 , 从而提高电池性能 , 这也是改善 PPy 膜光电性能的有效方法 。本课题组 [ 30] 在研究试验条件 ( 温度 、 时间 、N O -3 浓度等 ) 对聚吡咯膜敏化结果的影响时作了 以下 工 作 : 1) 研究表明 : 在较低温度下电聚合的 PPy 膜对 T iO2纳米结构电极产生敏化效果较好 ; 2) 合成 PPy 膜的最佳条件是 : 电解质N O -3 浓度为 0. 2 m ol/ L , 温度控制在 20℃, 聚合时间为 60 s; 3) 对分别以对甲苯磺酸根离子与硝酸根离子 为电解质合成 PPy 膜所产生的敏化效果进行了比较研究 , 发现阴离子的类型和84 高分子材料科学与工程 2 00 4年性 质 对 敏 化 效 果 有 很 大 影 响 ; 4) 初 步 探 索 了PPy 膜 对 T iO 2 纳 米 结 构 电 极 产 生 敏 化 作 用 的机理 。3 其它自 从 H orowit z 等研究了 G aA s/ PT ( Poly -t hiophen ) p - n 结 , 第 一 次 报 道 了 有 机 / 无 机 薄膜 光 生 伏 打 结 后 。 Fr anck 等 又 对 CdS/ PMe T( Poly ( 3- met h y th ioph ene) ) 肖特基结进行了研究 。 虽然得到的光电转换率受到了聚合物膜光吸收的严重限制 , 但至少开辟了导电聚合物在光电化学领域的又一应用 。 近几年 , 也有关于在半透明半导体硫化镉或硒化镉与电聚合的三甲基噻吩 ( PMe T ) 之间形成全固态肖特基结的相关报道 [ 31 , 32] 。 使用多晶半透明半导体的主要优点在于廉价和避免聚合物膜的光吸收 。 在这种肖特基结中 , 高度掺杂的聚合物膜相当于金属 ,在 半 导 体 中 形 成 光 生 载 流 子 。 Gam boa[ 33] 等 研究 了 CdT e/ PMe T 结 的 光 电 结 构 , 并 得 到 1%的光电转换率 。4 结语目前 , 利用导电聚合物制备 的 光 电化 学 太阳能电池的总体光电转换率还较低 , 还需在提高其光吸收范围 , 改善聚合物结构 , 降低光生电荷的复合 , 保持一定的氧化还原状态等进一步改进 。 对于不同结构和不同掺杂状态的导电聚合物的研究有望克服这些缺陷 。 导电聚合物的光电响应还没有达到令人满意的地步 , 对它的研究还处于开始阶段 , 但它以其特殊的性质 , 简单的制备方法 , 越来越受到光电化学太阳能电池研究者们的青睐 。 伴随着影响光电转换率和填充因子的各种因素的逐步优化及各种导电聚合物光电性质的更深入研究和更高效导电聚合物的应用 , 导电聚合物光电化学太阳能电池将会成为太阳能家族重要的一员 。参考文献 :[ 1] G reenM A , Em eryK , Bü ch er K , et al . P rog . Ph oto -vol t . R es . A p pl. ,1 99 8,6 :3 5.[ 2] F er r er e S, G r eggBA . J. Ph y s. Ch em . B,1 997 ,1 01 :4 49 0.[ 3] Fer ber J, L u t her J. Sol . E ner g yMa ter . Sol . Cel l s. ,1 99 8,5 4 :2 65 .[ 4] H u angSY , Sch l ich tho‥ r l G, N ozikA J , et a l . J. Ph ys.C he m. B,1 99 7,1 0 1:2 5 76 .[ 5] Sch l ichth o‥ r l G, H u an gSY , Sp r ag ueJ , et al . J. Ph y .Ch em . B,1 99 7,1 01:8 141 .[ 6] Pap ag eo rgi ouN , Barb é C, Gr a‥ tzel M . J. Phy s. Ch em .B,1 998 ,1 02 :4 15 6.[ 7] N o gue ira A F , Mi car om i L , G azot ti W A , et al . El ec-tr o chem istr yC om m un iat ion ,1 99 9,1 :2 62.[ 8] Sav en ije T J, Wa r m a nM J. C he m ica l P hy sics L et t er s,199 8,2 8 7:1 4 8.[ 9] 柳闽生 ( L I U Mi n- shen g ) , 郝彦忠 ( H A O Y an -zhon g ) ,乔 学 斌 ( Q I A O Xu e- b in ) , 等 . 电 化 学( El ect ro ch emi str y) ,1 99 8,4 ( 3) :2 46 .[ 10 ] Ma r tin i M , DeP aol i M A . So l. En er g yMa ter . So l .C el l s. ,2 002 ,7 3:2 35.[ 11 ] N og u eir aA F , A l on so -V ant eN , D eP ao liM A .Synt h . Me t. ,1 9 99,1 05:2 3.[ 12 ] G ran t CD , Sch w ar tzber gA M , Smesta dG P. Jou rn alo f E lectr oan al y tical Ch em ist r y,2 0 02 ,5 22 :4 0.[ 13 ] 宋心琦 ( SON GX in-q i) . 国外科技动态 ( R ecent Devel -o pm en ts i nS cien ce 2 . Coll eg e ofC hemical ? @: 1on0u1t ing 2ol ymer ; 2hot oel e1t r o1hem istr y ; nan ost r u1tu re0 solar 1el l( 上接第 4 5页 A1on tin u e05 r om 2 . 4 5.A D V A N CE SI N STU D I E SO FT H EP OL Y ME RME L TV I / RA TI ON E B TR U SI ON MO L D I N GGA O X u e- Cin, D7 Y ou -b in g, CH EN Chang -sen , SHE N K ai-zhi( Col leg e ofP oly mer Science and E ng ineeri ng , T he State E eyF aboratory ofP oly mer G aterials E ngi neer ing , Sichuan U niver sity , Ch engd u H1++H, , China.A / ST RA CT : Se3eral I in0s o5 t e1hnology o5 t h e 2oly mer mel t 3ib rat ione 4t ru sionm ol 0i ng w er e in -t r o0u1e0, t heyi n1l u0em e1han i1al 3ib r at ion , el e1tr om agn et i1 3ib rat iona n0 ult r asoni1 3ib rat ion .8 h e eCui2m ent or t he 0 ie use0 t o realize 3ibr at ionw as int r o0u 1e0 br ie5ly . U sing th ese 3ibr at ione -Cui2ment st os t u0yt het e1hn ologyo 5 th e 2oly merm elt 3i br at ione 4 t r usionm ol0ing . 7t 1anb e5ou n0 t hat t he 3i br at ione 4 tr usion 1anm aI et h e 2oly m er m elt 2 ro1essingr h eologi1al 2ro2 er tiesan0 m e1h an i1al 2ro2ert ies be im 2r o3e0, moreo3er , t he aggr egat ions t ru1t ur e al so 1h anges.9 : ; ? @: 3ibr at ione 4t rusion ; rheologi1al 2r o2 er t ies; me1hani1al 2 ro2ert ies05 高分子材料科学与工程 2 00 4年