solarbe文库
首页 solarbe文库 > 资源分类 > PDF文档下载

1-1-PVPMC-2022-Clean-Power-Research

  • 资源大小:1.59MB        全文页数:21页
  • 资源格式: PDF        下载权限:游客/注册会员/VIP会员    下载费用:5金币 【人民币5元】
游客快捷下载 游客一键下载
会员登录下载
下载资源需要5金币 【人民币5元】

邮箱/手机:
温馨提示:
支付成功后,系统会根据您填写的邮箱或者手机号作为您下次登录的用户名和密码(如填写的是手机,那登陆用户名和密码就是手机号),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦;
支付方式: 微信支付    支付宝   
验证码:   换一换

 
友情提示
2、本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   
4、下载无积分?请看这里!
积分获取规则:
1充值vip,全站共享文档免费下;直达》》
2注册即送10积分;直达》》
3上传文档通过审核获取5积分,用户下载获取积分总额;直达》》
4邀请好友访问随机获取1-3积分;直达》》
5邀请好友注册随机获取3-5积分;直达》》
6每日打卡赠送1-10积分。直达》》

1-1-PVPMC-2022-Clean-Power-Research

2022 Clean Power Research, LLC. The Importance of Data Quality for Reducing the Uncertainty of Site-Adapted Solar Resource Datasets Patrick Keelin | Lead Product Manager August 23, 2022 20 years advancing the energy transformation Clean Power Research Team Industries ServedExpertise 65 Electric Utilities Energy Agencies IOUs Munis Co-ops 200 Solar Industry Partners Independent engineers Solar financiers, operators, installers Utility planners 75 employees HQ Kirkland, WA Research Napa, CA Satellites NY MA 20 people with advanced degrees Engineering/Environment/Resources Meteorology/Atmospheric Science Business Secure, enterprise-grade cloud software Focus Renewable energy DERs, EVs and beyond Solar data intelligence Patents 44 granted, 18 pending Partnered with Dr. Perez SUNY Albany v021622 Powering Intelligent Energy Decisions for the Solar Industry Equivalent solar dataset validation years Influencing 90 of U.S. solar development Delivering 10M API data requests per month Winner of double-blind EPRI forecast trial Operational data services provided for 1M PV systems 10GW of solar 90 10M 11M 1,074 replace with photo, see slide 19 for instructions Serving the industry’s leading enterprises 200 v021622 Background - What is a tuning study Tuning methodology Kankiewicz, A., Wu, E., Dise, J., Perez, R., 2014 Reducing Solar Project Uncertainty with an Optimized Resource Assessment Tuning Methodology. Proc., ASES Solar 2014 Conference, San Francisco, California Background - What is a tuning study Tuning methodology Kankiewicz, A., Wu, E., Dise, J., Perez, R., 2014 Reducing Solar Project Uncertainty with an Optimized Resource Assessment Tuning Methodology. Proc., ASES Solar 2014 Conference, San Francisco, California Background - What is a tuning study Tuning methodology Kankiewicz, A., Wu, E., Dise, J., Perez, R., 2014 Reducing Solar Project Uncertainty with an Optimized Resource Assessment Tuning Methodology. Proc., ASES Solar 2014 Conference, San Francisco, California Background - What is a tuning study Tuning uncertainty 2.00 Background - Tuning uncertainty J. Alfi, A. Kubiniec, G. Mani, J. Christopherson, Y. He and J. Bosch, “Importance of input data and uncertainty associated with tuning satellite to ground solar irradiation,“ 2016 IEEE 43rd Photovoltaic Specialists Conference PVSC, 2016, pp. 0301-0305, doi 10.1109/PVSC.2016.7749598. Motivation for an updated study What’s the best achievable today Improved ground-data QC methods SolarAnywhere model updates Experience with hundreds of projects Why does solar resource data quality matter Short Validation 1998 2022 Annu al Inso lation Resource Data Dataset B Dataset A On-site data Correlation On-site data Dataset B Dataset A Correlation Tuned Resource Data Why does solar resource data quality matter Short Validation Complete Validation 1998 2022 Annu al Inso lation On-site data On-site data Dataset B Dataset A SolarAnywhere Correlation Correlation Resource Data 2020 PV Systems Symposium Webinar Satellite Irradiance Model Accuracy Improvements Clean Power Research See also Eva Plaza Sanz Peter Johnson UL Multiple Satellite Models for On-Site Long-Term References Updated study design Same as original study Tuning procedure Study methodology but expanded period, 1998 – 2021 SURFRAD, 2011- 2021 SOLRAD Test Datasets V3.2 to approximate original study Improved ground-data QC V3.6 latest Expanded geography – Europe Results Results QC similar to BSRN recommended quality checks. See https//bsrn.awi.de/en/data/quality-checks SolarAnywhere model improvements 2015 2016 2017 2018 2019 2020 2021 2022 Tuning methods published V3.2 IR image processing V3.4 Time series monthly aerosols V3.5 Time series hourly aerosols V3.3 Satellite hardware calibration V3.6 5min x 500m imagery Selected features Results Bottom line Results Additional sources of solar resource uncertainty Reference measurement uncertainty Resource shift DNI and DHI transposition to plane of array Other environmental factors e.g., snow, soiling, albedo, shading Modeling errors e.g., sub-hourly clipping Learn more Tuning Study Resources https//www.solaranywhere.com/resources/webinars-whitepapers/ground-tuning-studies https//pvpmc.sandia.gov/resources-and-events/events/ Follow Clean Power Research on LinkedIn Upcoming webinar – High Res. Data http//ow.ly/FOcw50Kh87V The information contained in this presentation is confidential. Thank You Questions Patrick Keelin | pkeelincleanpower.com

注意事项

本文(1-1-PVPMC-2022-Clean-Power-Research)为本站会员(小光伏)主动上传,solarbe文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知solarbe文库(发送邮件至401608886@qq.com或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2008-2013 solarbe文库网站版权所有
经营许可证编号:京ICP备10028102号-1

公众号二维码
收起
展开