solarbe文库
首页 solarbe文库 > 资源分类 > PDF文档下载

B192+Numerical simulation of BaSi2 homojunction solar cells+李飞

  • 资源大小:257.97KB       
  • 资源格式: PDF        下载权限:游客/注册会员/VIP会员    下载费用:8金币 【人民币8元】
游客快捷下载 游客一键下载
会员登录下载
下载资源需要8金币 【人民币8元】

邮箱/手机:
温馨提示:
支付成功后,系统会根据您填写的邮箱或者手机号作为您下次登录的用户名和密码(如填写的是手机,那登陆用户名和密码就是手机号),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦;
支付方式: 微信支付    支付宝   
验证码:   换一换

 
友情提示
2、本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   
4、下载无积分?请看这里!
积分获取规则:
1充值vip,全站共享文档免费下;直达》》
2注册即送10积分;直达》》
3上传文档通过审核获取5积分,用户下载获取积分总额;直达》》
4邀请好友访问随机获取1-3积分;直达》》
5邀请好友注册随机获取3-5积分;直达》》
6每日打卡赠送1-10积分。直达》》

B192+Numerical simulation of BaSi2 homojunction solar cells+李飞

Numerical simulation of BaSi2 homojunction solar cells  The n-BaSi2/p-BaSi2500 nm/p-BaSi2 homojunction thin-film solar cell has obtained 0.28 cell efficiency experimentally, but the cell efficiency is far from the theoretical value of BaSi2 material.  There is no further explanation in theory about the defects of p-BaSi2/n-BaSi2 homojunction solar cell devices.  We use SCAPS-1D simulation software to simulate the window layer and absorber layer of p-BaSi2/n-BaSi2 solar cells, respectively, and explain the mechanism of the effect of absorber layer defects and window layer on device performance. Introduction Research background and device design Conclusion ⚫ The maximum efficiency of P-BaSi2/n-BaSi2 homojunction solar cells is close to 26. ⚫ The maximum opening voltage of P-BaSi2/n-BaSi2 homojunction solar cell is about 0.85 V, and the maximum current is about 34mA/cm2. ⚫ The introduction of the n-BaSi2 buffer layer in the device structure of p-BaSi2/n-BaSi2/n-BaSi2/n-Si effectively reduces the efficiency loss caused by the energy band mismatch and defects caused by the n-Si substrate. ➢ As the thickness of the window layer increases, the current of the battery device is significantly reduced, because the increase in the thickness of the window layer leads to more recombination centers. This increases the leakage current of the device. ➢ When the thickness of the window layer is about 20nm, the efficiency of p-BaSi2/n-BaSi2 is close to 26 . The absorber layer is generally thicker than the window layer. In order to maintain the performance of the device, we need the absorber layer to have a lower carrier concentration, which requires our absorber layer to have a low defect concentration. It can be seen from the figure that when the defect concentration of the absorber layer is close to 1 1015cm-3, the open circuit voltage, current, FF and efficiency of the P-BaSi2/n- BaSi2 homojunction solar cell are all decreasing. ➢At a lower carrier concentration in the absorption layer, the carrier concentration in the window layer will not affect the performance of the device. ➢When the carrier concentration in the absorption layer is higher, the carrier concentration in the window layer increases, and the efficiency of the device increases significantly, but the current will decrease to a certain degree at this time. This may be due to the increase in carrier concentration in the absorber layer, which increases the series resistance. The effect of carrier concentration on device performance The influence of window layer thickness on device performance Optimization of the absorption layer Fei Li, Weijie Du, Yiwen Zhang Key Laboratory of Optoelectronic Material and Device, Mathematics and Science College, Shanghai Normal University 200234, China 18275448352163.com ◆ Suitable forbidden band width 1.3 eV ◆ absorption coefficient a 3 104 cm-1 ◆ minority carrier lifetime 10 μs ◆ minority carrier diffusion length 10 mm ➢The addition of n-Si substrate makes the theoretical efficiency of the device drop directly from 25.47 to 12.16. In order to avoid the formation of a potential barrier region between the n-Si substrate and n- BaSi2, the carrier transport is hindered, resulting in unsatisfactory device theoretical efficiency. ➢We designed the device structure of p-BaSi2/n-BaSi2/n-BaSi2/n-Si and simulated it, and found that the introduction of the n-BaSi2 buffer layer effectively reduced the energy band caused by the n-Si substrate Mismatches and efficiency losses due to defects. Figure 1 BaSi2 is composed of abundant reserves of Ba and Si. Figure 1 BaSi2 is a common indirect bandgap semiconductor, but its energy state near the bottom of the conduction band changes more slowly. Compared with common indirect bandgap semiconductors, the probability of direct transitions in BaSi2 is greatly increased. BaSi2 has the property of large absorption coefficient of direct band gap semiconductor. n-BaSi2 p-BaSi2 Rear electrode Transparent conductive electrode Transparent conductive electrode n-BaSi2 i-BaSi2 p-BaSi2 Rear electrode Light Light a b Figure 2 1E16 1E17 1E18 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 E ff N D n-BaSi 2 cm-3 NA1E18 cm -3 NA5E18 cm -3 NA1E19 cm -3 NA5E19 cm -3 1E16 1E17 1E18 68 70 72 74 76 78 80 82 84 86 FF N D n-BaSi 2 cm -3 NA1E18 cm -3 NA5E18 cm -3 NA1E19 cm -3 NA5E19 cm -3 1E16 1E17 1E18 17 18 19 20 21 22 23 24 J sc mA/cm 2 N D n-BaSi 2 cm -3 NA1E18 cm -3 NA5E18 cm -3 NA1E19 cm -3 NA1E19 cm -3 1E16 1E17 1E18 0.65 0.70 0.75 0.80 0.85 0.90 V oc V N D n-BaSi 2 cm -3 NA1E18 cm -3 NA5E18 cm -3 NA1E19 cm -3 NA5E19 cm -3 a c d b 50 100 150 200 5 10 15 20 25 E ff p -BaSi 2 nm NA1E18cm -3 NA5E18cm -3 NA1E19cm -3 NA5E19cm -3 50 100 150 200 0.73 0.74 0.75 0.76 0.77 0.78 V oc V p -BaSi 2 nm NA1E18cm -3 NA5E18cm -3 NA1E19cm -3 NA5E19cm -3 50 100 150 200 5 10 15 20 25 30 35 J sc mA/cm 2 p -BaSi 2 nm NA1E18 cm -3 NA5E18 cm -3 NA1E19 cm -3 NA5E19 cm -3 50 100 150 200 82.0 82.5 83.0 83.5 84.0 FF p -BaSi 2 nm NA1E18cm -3 NA5E18cm -3 NA1E19cm -3 NA5E19cm -3 (a) (d) (b) (c) 500 1000 1500 2000 2500 3000 3500 4000 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20.0 Eff n-BaSi 2 Thick nm 500 1000 1500 2000 2500 3000 3500 4000 26.8 27.0 27.2 27.4 27.6 27.8 28.0 28.2 28.4 28.6 J sc mA/cm 2 n-BaSi 2 Thicknm 500 1000 1500 2000 2500 3000 3500 4000 85.52 85.54 85.56 85.58 85.60 85.62 85.64 FF n-BaSi 2 Thicknm 500 1000 1500 2000 2500 3000 3500 4000 0.810 0.815 0.820 0.825 0.830 0.835 0.840 V oc (V) n-BaSi 2 Thicknm c b d a Figure 3 -窗口层 吸收层 Sun Light n-BaSi2 P-BaSi2 n-Sin-BaSi2 a b 0.0 0.2 0.4 0.6 0.8 -15 -20 -25 -30 -35 -40 -45 E FF 17.51 E FF 12.16 Current density mA/cm 2 Voltage V E FF 25.47 窗口层 吸收层 Sun Light n-BaSi2 P-BaSi2

注意事项

本文(B192+Numerical simulation of BaSi2 homojunction solar cells+李飞)为本站会员(光伏小萝莉)主动上传,solarbe文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知solarbe文库(发送邮件至401608886@qq.com或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2008-2013 solarbe文库网站版权所有
经营许可证编号:京ICP备10028102号-1

1
收起
展开