钙钛矿薄膜形貌控制与全印刷工艺钙钛矿模组研究-杨松旺(1)
| http//www.sic.ac.cn Songwang Yang 杨松旺 CAS Key Laboratory of Materials for Energy Conversion 中科院能量转换材料重点实验室 Shanghai Institute of Ceramics, Chinese Academy of Sciences 中国科学院上海硅酸盐研究所 swyangmail.sic.ac.cn 钙钛矿薄膜形貌控制与全印刷工艺 钙钛矿模组研究 November 8–10, 2018 Xian, China | http//www.sic.ac.cn Team from DSSC project with Sony joint lab 2006.8 2007.4 2011.7 Contract Opening Changning Enlargement Jiading SICCAS-SONY joint lab 2006 2011 2013.72011.12 Closed Perovskite 2200 m2 | http//www.sic.ac.cn Experience in printable solar cells modules facade roof top Lab Cell Cell Module100kW scale demonstration of DSSC | http//www.sic.ac.cn Outline Introduction Research contents 1) Ultrasmooth film via mixed antisolvent 2) Morphology designed film via interface precipitation method 3) 3D interconnected porous film for carbon electrode perovskite solar cells 4) Perovskite solar modules Conclusions | http//www.sic.ac.cn Outline Introduction Research contents 1) Ultrasmooth film via mixed antisolvent 2) Morphology designed film via interface precipitation method 3) 3D interconnected porous film for carbon electrode perovskite solar cells 4) Perovskite solar modules Conclusions | http//www.sic.ac.cn Perovskite films and morphology control Perovskite MAPbI3, MACH3NH3 electrode HTM Perovskite ETL electrode +- e- h - + ✓ Solution processing ✓ High absorbance ✓ High carrier mobility long carrier diffusion length Perovskite materials and devices Nanotechnology enabled morphology control ACS Appl. Mater. Interfaces, 2011, 3, 2148 Hierarchical nanostructured TiO2 in DSSC J. H. Noh, et al Nano Lett 2013, 13, 1764 | http//www.sic.ac.cn Traditional opinion on film morphology 1 2 3 4 VOC 0.52 V JSC 5.6 mAcm-2 FF 52 PCE 1.5 VOC 0.93 V JSC 18.2 mAcm-2 FF 55 PCE 9.34 VOC 1.00 V JSC 16.5 mAcm-2 FF 73 PCE 12.0 VOC 0.98 V JSC 21.0 mAcm-2 FF 68 PCE 13.9 MAPbI3 grain ●●● e- h e-h Recombination Uncovered area Preparation process Film Morphology Cell Performance J. H. Heo, et al., Nature photonics 2013, 7, 486 Traditional opinion film with smooth surface | http//www.sic.ac.cn Our strategy to control the film morphologies Transformation from the intermediate to MAPbI3 Crystal growth of MAPbI3 ① ② ③ Crystallization process of MAPbI3 in one-step solution method Investigation on crystallization → Realization of morphology control → Morphology design → Performance enhancement Nucleation of the intermediate ( MAIPbI2DMSO) Kinetics of crystallization Influence of nucleation on crystal size | http//www.sic.ac.cn Outline Introduction Research contents 1) Ultrasmooth film via mixed antisolvent 2) Morphology designed film via interface precipitation method 3) 3D interconnected porous film for carbon electrode perovskite solar cells 4) Perovskite solar modules Conclusions | http//www.sic.ac.cn Crystallization process via mixed anti-solvent Precursor Solution DMF/DMSO Mixed anti-solvent Anealing One-step solution method ethyl ether is miscible with DMF n-hexane is immiscible with DMF 1 μm Nucleation process of perovskite films n-hexane | http//www.sic.ac.cn Ordered growth of grains and ultrasmooth surface MAS 0 30 50 70 100 RMS nm 6.07 5.22 4.34 5.12 8.22 PCE 15.74 16.10 17.08 16.48 15.89 MAS 0 25 50 75 90 RMS nm 9.43 13.29 5.14 4.80 20.20 PCE 13.10 13.44 15.73 16.77 14.27 MAS x hexane 1-x ethyl ether MAS x hexane 1-x chloroform ACS Appl. Mater. Interfaces 2017, 9 4, 3667–3676 SEM image of films from 0 50 n-hexane MAS 0 Disordered small grains 1 μm h e- ( 310) intensity decreases Ordered growth of MAPbI3 grains Roughness of the films 0.1 0.3 0.5 0.7 0.9 1.1 0 5 10 15 20 25 0 50 10 0 Voltage V Current density mA/cm 2 ( 110) intensity increases | http//www.sic.ac.cn Is really the smooth surface the best | http//www.sic.ac.cn Outline Introduction Research contents 1) Ultrasmooth film via mixed antisolvent 2) Morphology designed film via interface precipitation method 3) 3D interconnected porous film for carbon electrode perovskite solar cells 4) Perovskite solar modules Conclusions | http//www.sic.ac.cn Crystallization process for the conventional method Conventional One-step solution method CM Induced by miscible anti-solvent BP ✓ Induced by ethyl ether → high △ c → homogeneous nucleation → dense structure ✓ Autonomous nucleation→ low △ c→ secondary nucleation → porous structure CM BP c-TiO2 FTO Glass Roughness of substrate decreases Heterogeneous nucleation decreases m-TiO2 1 μm Anti-solvent | http//www.sic.ac.cn Interface precipitation solution process Phenomena of interface precipitation 4ml of n-hexane was added into the perovskite precursor. Three layers occur. a IP-LPT one-shot dripping 0.5 mL, lasting for 2 s, b IP-SPT sequentially dripping 0.5 mL, 6 s, c IP-SPB sequentially dripping 1.0 mL, 12 s, and d sequentially dripping 2.5 mL, 24 s. IP-SPB IP-SPTIP-LPT IP-DB Schematic representation of nucleation and crystal growth process by IP method 1 μm Supersaturation Ra te Kinetics curves of nucleation and crystal growth IP-non-interface zone IP- interface zone Interface precipitation solution process by n-hexane IP Nanoscale 2017, 97 2569-2578 | http//www.sic.ac.cn Effect of surface morphologies on performance Mixed Porous Mixed Dense Dense Porous Mixed 1 μm1 μm1 μm Bad coverage, large pores CM secondary nucleation BP primary nucleation IP-SPT primary secondary nucleation Traditionally, best film Highest eff. Top-view SEM images | http//www.sic.ac.cn Effect of surface morphologies on performance I-V curves | http//www.sic.ac.cn High absorbance and ultrafast carrier extraction IP-SPT film Dense film PL spectra measured on top of the glassTransient PL spectra of MAPbI3/HTM films prepared by dripping of different anti-solvents Spiro Spiro ACS Appl. Mater. Interfaces 2017, 9 28, 23624-23634 SEM images of the interface of MAPbI3/Spiro Vis-NIR absorbance spectra | http//www.sic.ac.cn Penetration of Ag particles into HTM layer | http//www.sic.ac.cn Penetration of Ag particles into HTM layer Nanotechnology 2018, 29, 255201 | http//www.sic.ac.cn Outline Introduction Research contents 1) Ultrasmooth film via mixed antisolvent 2) Morphology designed film via interface precipitation method 3) 3D interconnected porous film for carbon electrode perovskite solar cells 4) Perovskite solar modules Conclusions | http//www.sic.ac.cn Films with various morphologies for carbon electrode Porous structure is more suitable than smooth structure for carbon electrode Mesoporous TiO2 Perovskite layer Carbon electrode Porous structure Dense structure Porous/dense structure Unpublished | http//www.sic.ac.cn The optimized efficiency for carbon electrode 1cm2, mask 0.07cm2 中国科学院上海硅酸盐研究所 绿色光电转换技术研发项目部 Recycled utilization of Pb2 and substrate 中国科学院上海硅酸盐研究所 绿色光电转换技术研发项目部 Recycled utilization of Pb2 PbI2 purity 99.9 中国科学院上海硅酸盐研究所 绿色光电转换技术研发项目部 Recycled utilization of Pb2 中国科学院上海硅酸盐研究所 绿色光电转换技术研发项目部 Recycled utilization of FTO/c-TiO2/m-TiO2 substrate Original Degraded Recycled Carbon-based PSCs Voc V Jsc mAcm-2 FF Max. Eff Original 0.934 20.04 65.25 12.21 Degraded 0.709 18.17 51.26 6.61 Recycled 0.912 20.88 63.19 12.03 S. Zhang, S.W.Yang*, J.M. Wang* et al, ACS Sustainable Chem. Eng. 2018, 6, 7558 | http//www.sic.ac.cn Outline Introduction Research contents 1) Ultrasmooth film via mixed antisolvent 2) Morphology designed film via interface precipitation method 3) 3D interconnected porous film for carbon electrode perovskite solar cells 4) Perovskite solar modules Conclusions | http//www.sic.ac.cn Procedures for perovskite sub-modules MW-scale printing line Laser etching Printing c-TiO2 Printing carbon Printing m-TiO2 Coating perovskite | http//www.sic.ac.cn Assembly of solar modules with various sizes Perovskite modules Perovskite sub-modules active area 49cm MAPbI3