solarbe文库
首页 solarbe文库 > 资源分类 > PDF文档下载

Prilliman_PVPMC_webinar_2020-08-05

  • 资源大小:685.10KB        全文页数:19页
  • 资源格式: PDF        下载权限:游客/注册会员/VIP会员    下载费用:5金币 【人民币5元】
游客快捷下载 游客一键下载
会员登录下载
下载资源需要5金币 【人民币5元】

邮箱/手机:
温馨提示:
支付成功后,系统会根据您填写的邮箱或者手机号作为您下次登录的用户名和密码(如填写的是手机,那登陆用户名和密码就是手机号),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦;
支付方式: 微信支付    支付宝   
验证码:   换一换

 
友情提示
2、本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   
4、下载无积分?请看这里!
积分获取规则:
1充值vip,全站共享文档免费下;直达》》
2注册即送10积分;直达》》
3上传文档通过审核获取5积分,用户下载获取积分总额;直达》》
4邀请好友访问随机获取1-3积分;直达》》
5邀请好友注册随机获取3-5积分;直达》》
6每日打卡赠送1-10积分。直达》》

Prilliman_PVPMC_webinar_2020-08-05

Transient weighted moving average model of photovoltaic module back- surface temperature PVPMC Webinar 2020 Matt Prilliman NREL, former ASU/Sandia Josh Stein Sandia, Daniel Riley Sandia, Govindasamy Tamizhmani ASU Sandia National Laboratories is a multimission laboratory managed and operated by National Technology Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. Agenda  Motivations  FEA Modeling approach  Moving-average Model Development  Model Validation  Conclusions Motivation  PV performance typically 1-hour models  Steady-state temperature models standard  Steady-state models do not account for thermal mass of module  Interest in finer data resolution  Underestimation of low irradiance performance  Inverter clipping  Battery storage/dispatch modeling Transient Models  Jones and Underwood  Stein, Luketa-Hanlin optimized for Hawaii  Hayes, Ngan Similar model for CdTe  Steady-state models not accounting for thermal mass of module  Need Accuracy of transient models with few accessible input parameters 𝐶𝑚𝑜𝑑𝑢𝑙𝑒 𝑑𝑇𝑚𝑜𝑑𝑢𝑙𝑒𝑑𝑡 𝜎 ∗𝐴∗ 𝜀𝑠𝑘𝑦 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 −𝜕𝑇 4 −𝜀𝑚𝑜𝑑𝑢𝑙𝑒𝑇𝑚𝑜𝑑𝑢𝑙𝑒4 𝛼 ∗Φ∗𝐴−𝐶𝐹𝐹 ∗𝐸 ∗ln 𝑘1𝐸𝑇 𝑚𝑜𝑑𝑢𝑙𝑒 − ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑 ℎ𝑐,𝑓𝑟𝑒𝑒 ∗𝐴∗ 𝑇𝑚𝑜𝑑𝑢𝑙𝑒 −𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 Stein, Luketa-Hanlin, Improvement and Validation of a Transient Model to Predict Photovoltaic Module Temperature. Ngan, Hayes, “A Time-Dependent Model for CdTe PV Module Temperature in Utility-Scale Systems,” IEEE Journal of Photovoltaics, 2015, Vol. 5, p. 238-242. Jones, Underwood, “A thermal model for photovoltaic systems”, Solar Energy, Vol. 70, 2001, p. 349-359. FEA Simulations  Finite Element Analysis FEA of simulated module  Physical Heat transfer balance  Convection  Radiation  Irradiance  Conduction  Electricity Generation Steady-state FEA  Within inherent inaccuracy of Sandia steady-state model  Convergence tests  3 ambient conditions  Range of wind speeds -6.7C Ambient Wind speed m/s 1 3 5 10 Steady-state model C 19.7 16.0 12.8 6.7 FEA Temperature C 23.9 18.3 14.9 8.2 FEA - Steady C 4.2 2.3 2.1 1.5 15.6C Ambient Wind speed m/s 1 3 5 10 Steady-state model C 42.0 38.3 35.1 29.0 FEA Temperature C 40.7 38.2 34.1 28.7 FEA - Steady C -1.3 -0.2 -1.1 -0.3 32.2C Ambient Wind speed m/s 1 3 5 10 Steady-state model C 58.6 54.9 51.7 45.6 FEA Temperature C 57.9 54.3 50.6 45.5 FEA - Steady C -0.7 -0.6 -1.1 -0.1 Transient FEA 0 1000 2000 3000 4000 15 30 45 60 15 30 45 60 0 1000 2000 3000 4000 15 30 45 60 2 m/s Wind Speed Ti m e se conds ΔE 600 W/m 2 ΔE 400 W/m 2 ΔE 200 W/m 2 16C Am bient Tem perature Mod ule Back -Su rfa ce Tempe ra tur e C 5 m/s Wind Speed ΔE 600 W/m 2 ΔE 400 W/m 2 ΔE 200 W/m 2 10 m/s Wind Speed ΔE 600 W/m 2 ΔE 400 W/m 2 ΔE 200 W/m 2 0 1000 2000 3000 4000 15 30 45 60 15 30 45 60 0 1000 2000 3000 4000 15 30 45 60 2 m/s Wind Speed Ti m e se conds ΔE 600 W/m 2 ΔE 400 W/m 2 ΔE 200 W/m 2 32C Am bient Tem perature 5 m/s Wind Speed ΔE 600 W/m 2 ΔE 400 W/m 2 ΔE 200 W/m 2 10 m/s Wind Speed ΔE 600 W/m 2 ΔE 400 W/m 2 ΔE 200 W/m 2 Model Development  Take weighted average of steady-state predictions  Optimize weighting parameter for best fit between SS weighted-average and FEA temperature curve  Repeat for each FEA dataset, evaluate P as function of environmental variables Model Development  Exponential power parameters equally dependent on wind speed, unit mass  Bilinear Interpolation 1 𝑊𝑆1 1 𝑊𝑆1 𝑚𝑢1 𝑊𝑆1𝑚𝑢1 𝑚𝑢2 𝑊𝑆1𝑚𝑢2 1 𝑊𝑆2 1 𝑊𝑆2 𝑚𝑢1 𝑊𝑆2𝑚𝑢1 𝑚𝑢2 𝑊𝑆2𝑚𝑢2 𝑎0 𝑎1 𝑎2 𝑎3 𝑃11 𝑃12 𝑃21 𝑃22 P a0 a1*WS a2*mu a3*WS*mu Coefficient Value a0 0.0046 a1 0.00046 a2 -0.00023 a3 -1.6E-05 Model Equation  Forward-facing model describes time following the given index  Takes moving-average of all times within 20 minutes prior to current index  Matches ramp rate of actual module thermal behavior 𝑇𝑀𝐴,𝑖 σ𝑖2 𝑡𝑖≤1200 𝑇 𝑆𝑆,𝑖 ∗𝑒−𝑃∗𝑡𝑖 σ𝑖2𝑡𝑖≤1200 𝑒−𝑃∗𝑡𝑖 Model Example  Calculation for index 1  Wind speed measured at height of 2 meters  Unit mass from module spec sheet Time index, i Seconds before t0, ti Steady State Temp. TSS,i C 2-meter Wind Speed m/s Pi TMA, i C 1 0 32.5 5.0 0.0032 22.5 2 120 22.5 N/A N/A N/A 3 240 26.2 N/A N/A N/A 4 480 28.7 N/A N/A N/A 5 840 19.0 N/A N/A N/A 6 960 18.2 N/A N/A N/A 7 1080 18.3 N/A N/A N/A 8 1200 19.0 N/A N/A N/A 𝑇𝑀𝐴 22.5𝑒 −𝑃∗120 26.2𝑒−𝑃∗240 28.7𝑒−𝑃∗480 ⋯ 19.0𝑒−𝑃∗1200 𝑒−𝑃∗120 𝑒−𝑃∗240 𝑒−𝑃∗480 ⋯ 𝑒−𝑃∗1200 Model Validation  Improves performance for finer data intervals  Empirical cumulative distribution function shows probability of residual occurrences Model Validation  Annual 1-minute datasets  Statistical Metrics  RMSE  MAE  MBE  R-squared  4 Unique climates  Albuquerque dry, warm  Orlando tropical, warm  Las Vegas hot, dry  Vermont cold TA B LE IV F I T S T AT I S T I C S F OR M OV I N G - AV E R AG E M OD E L AS C OM P AR E D T O T HE S AN DI A S T E AD Y - S T AT E M O DE L F OR AN NU AL DA T ASE T S AC R OS S 4 L OC AT I ON S Alb u q u e rq u e Op ti m ize d S S M o v i n g - A v e ra g e RM S E C 3 . 7 9 2 . 6 9 M AE C 2 . 8 6 2 . 1 4 M BE C - 0 . 4 4 2 - 0 . 3 4 1 R - S q u a re d 0 . 9 36 0 . 9 67 Orla n d o Op ti m ize d S S M o v i n g - A v e ra g e RM S E C 4 . 4 1 2 . 0 3 M AE C 3 . 0 2 1 . 5 7 M BE C 0 . 3 2 6 0 . 3 1 8 R - S q u a re d 0 . 8 8 0 . 9 7 5 Ve rm o n t Op ti m ize d S S M o v i n g - A v e ra g e RM S E C 3 . 9 2 2 . 9 0 M AE C 2 . 8 6 2 . 2 0 M BE C - 0 . 8 6 - 0 . 8 3 R - S q u a re d 0 . 9 5 9 6 0 . 9 77 Las Ve g a s Op ti m ize d S S M o v i n g - A v e ra g e RM S E C 2 . 8 6 2 . 2 2 M AE C 2. 20 1 . 8 0 M BE C - 0. 3 8 0 - 0. 2 9 6 R - S q u a re d 0 . 9 6 8 0 . 9 8 1 Model Validation  Monthly RMSE values show greatest accuracy improvements occur in summer  Model has less effect in desert climates with clear skies Orlando Las Vegas Model Validation  Model matches the shape of the temperature curve  Some instances of residuals, but shape still matches Model Validation  Histograms MA model reduces extreme residual values  Increases instances of 0-2C residuals for 1-minute data  Much larger effect for climates with more intermittency Orlando Las Vegas Model Benefits  Annual Energy Performance Improvements upwards of a 0.58 on energy performance accuracy for 1-minute data  Effect is greater on a minute basis where energy modeling accuracy can vary with changes in irradiance Albuquerque Orlando Vermont Las Vegas MAE Moving Average - Steady-state C 0.72 1.45 0.66 0.4 Energy Accuracy Improvement 0.29 0.58 0.26 0.16 Conclusions  Industry need for transient model based on simple input parameters  Model can be based on database of module thermal behavior developed through FEA  Led to weighted average of steady-state temperatures within 20 minutes of given index  To accuracy improvements as high as 1.45C over steady- state models for 1-minute data  Can offer benefits to performance modeling for variety of applications Questions Contact mprillimnrel.gov, jssteinsandia.gov IEEE Journal of Photovoltaics Paper https//ieeexplore.ieee.org/document/9095219 ASU Master’s Thesis https//repository.asu.edu/items/57328

注意事项

本文(Prilliman_PVPMC_webinar_2020-08-05)为本站会员(光伏小萝莉)主动上传,solarbe文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知solarbe文库(发送邮件至401608886@qq.com或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2008-2013 solarbe文库网站版权所有
经营许可证编号:京ICP备10028102号-1

1
收起
展开