Prospect of New Technologies for a Multi TeraWatt PV Market_Pierre Verlinden
AMROCK Copyright AMROCK Pty Ltd 2018 Prospect of New Technologies for a Multi-TeraWatt PV Market Pierre Verlinden and Chen Yifeng* CREAC Conference, Beijing Aug. 21-23, 2018 2 AMROCK Copyright AMROCK Pty Ltd 2018 Status of PV Deployment in the World ✓ 0.5 TW cumulative Capacity by the end of 2018 ✓ Enough to supply electricity to about 400 Million people ✓ It took only 50 years ✓ The World will install the next 0.5 TW in just 3 years ✓ Then, another 1 TW in the following 3 years 1 10 1 0 0 1 , 0 0 0 1 0 , 0 0 0 1 9 9 0 1 9 9 5 2 0 0 0 2 0 0 5 2 0 1 0 2 0 1 5 2 0 2 0 P ow e r P l a n t si z e MW Y e a r Si z e of l a r g e s t P V P ow e r P l a n ts MW 2 GW Ma x U ti l i ty si ze La r ge st P V P l a nt Si ze x1 0 e ver y 5 ye a r s 3 AMROCK Copyright AMROCK Pty Ltd 2018 Levelized Cost of Electricity LCOE Source www.lazard.com in US/MWh Recent PPA, US20 to 30/MWh 4 AMROCK Copyright AMROCK Pty Ltd 2018 We need Net Zero Emission and Massive CO2 Removal from 2050 C. Breyer, “ The TW role of Solar PV”, 2nd TeraWatt Workshop, NREL, 2018 100 Renewable is the ONLY option 5 AMROCK Copyright AMROCK Pty Ltd 2018 Are we there yet How can we get there Today, only 2 of Global Electricity Generation 0 1 10 1 0 0 1 , 0 0 0 1 0 , 0 0 0 1 0 0 , 0 0 0 1 , 0 0 0 , 0 0 0 1 0 , 0 0 0 , 0 0 0 1 9 7 5 1 9 8 5 1 9 9 5 2 0 0 5 2 0 1 5 2 0 2 5 2 0 3 5 A n n u a l Sh i p m en t o r Cu m . Ca p a city MW p Y e a r W o r l d P V Ce l l P r o d u ctio n MW p W orl dw i de P V P roduc t i on Pr o j . a s s um i ng g rowt h 2 2 t o 1 0 C um ula t i v e i ns t a l l e d c a pac i t y C um ula t i v e P roj e c t i on E x po n. C um ul a t i v e i ns t a l l e d c a pa c i t y Cu mu l a t i v e Wo r l d w i d e PV Ca p a c i t y mu l t i p l i e d b y 1 2 .5 e v e r y 1 0 y e a r s . Years to double 3 Years 6 AMROCK Copyright AMROCK Pty Ltd 2018 Are we there yet How can we get there Today, only 2 of Global Electricity Generation 0 1 10 1 0 0 1 , 0 0 0 1 0 , 0 0 0 1 0 0 , 0 0 0 1 , 0 0 0 , 0 0 0 1 0 , 0 0 0 , 0 0 0 1 9 7 5 1 9 8 5 1 9 9 5 2 0 0 5 2 0 1 5 2 0 2 5 2 0 3 5 A n n u a l Sh i p m en t o r Cu m . Ca p a city MW p Y e a r W o r l d P V Ce l l P r o d u ctio n MW p W orl dw i de P V P roduc t i on Pr o j . a s s um i ng g rowt h 2 2 t o 1 0 C um ula t i v e i ns t a l l e d c a pac i t y C um ula t i v e P roj e c t i on E x po n. C um ul a t i v e i ns t a l l e d c a pa c i t y Cu mu l a t i v e Wo r l d w i d e PV Ca p a c i t y mu l t i p l i e d b y 1 2 .5 e v e r y 1 0 y e a r s . Ratio between Cumulative and Annual 3 Years to double 3 Years Time gap between Cumulative and Annual 4 years 7 AMROCK Copyright AMROCK Pty Ltd 2018 Are we there yet How can we get there Today, only 2 of Global Electricity Generation 0 1 10 1 0 0 1 , 0 0 0 1 0 , 0 0 0 1 0 0 , 0 0 0 1 , 0 0 0 , 0 0 0 1 0 , 0 0 0 , 0 0 0 1 9 7 5 1 9 8 5 1 9 9 5 2 0 0 5 2 0 1 5 2 0 2 5 2 0 3 5 A n n u a l Sh i p m en t o r Cu m . Ca p a city MW p Y e a r W o r l d P V Ce l l P r o d u ctio n MW p W orl dw i de P V P roduc t i on Pr o j . a s s um i ng g rowt h 2 2 t o 1 0 C um ula t i v e i ns t a l l e d c a pac i t y C um ula t i v e P roj e c t i on E x po n. C um ul a t i v e i ns t a l l e d c a pa c i t y Cu mu l a t i v e Wo r l d w i d e PV Ca p a c i t y mu l t i p l i e d b y 1 2 .5 e v e r y 1 0 y e a r s . We need to add 100GW of production capacity within 3 years We need to add 300GW of production capacity in 6 years 8 AMROCK Copyright AMROCK Pty Ltd 2018 If only 30 of Electricity is generated by PV Country Population millions Population growth Installed PV GW Installed per capita W Elect. per capita kWh Potential PV GW China 1,415 0.39 130 91.9 4,310 2,172 India 1,354 1.11 20 14.8 1,122 977 Japan 127 -0.23 51.6 406.3 7,371 285 Australia 25 1.32 7.024 283.2 9,742 108 South Korea 51 1.20 6.35 124.0 9,720 217 World 7,467 1.1 400 53.6 2,674 8,478 Assuming - 2.2 annual growth of elect. Consumption per capita over 25 years except India 3.9 - Population growth per table - PV being 30 of total energy - Average 1600 kWh/kWh But this is just Electricity, representing only 20 of Primary Energy Use 9 AMROCK Copyright AMROCK Pty Ltd 2018 Electrification of the Energy Economy is needed Electricity Generation, 21 Transportation, 28 Heating, 42 Non-Energy, 9 PRIMARY ENERGY Oil and Gas Coal, Gas, Nuclear Oil Coal 10 AMROCK Copyright AMROCK Pty Ltd 2018 Even some major oil companies, like Shell, say that PV will become the largest source of energy. Figure courtesy of Prof Martin Green Not Enough and Not Fast Enough to guarantee less than 2C temp. increase 11 AMROCK Copyright AMROCK Pty Ltd 2018 Projected from Shell’s Sky Scenario 1 1 0 1 0 0 1 , 0 0 0 1 0 , 0 0 0 1 0 0 , 0 0 0 2 0 0 0 2 0 2 0 2 0 4 0 2 0 6 0 2 0 8 0 2 1 0 0 W or l d w i d e A n n u a l P V P r od u ctio n a n d Cum u l a ti v e Ca p a city GW An n u a l Pr o d u c t i o n GW Cu mu l a t i v e Ca p a c i t y G W This may excite you or scare you . But in any case this is NOT FAST ENOUGH 12 AMROCK Copyright AMROCK Pty Ltd 2018 Learning Rate Comparison Y. Chen et al., “Historical Analysis for Estimating Future Module Efficiency and Manufacturing Cost of Industrial Crystalline Silicon and Thin Film Technologies”, WCPEC-7, 2018 13 AMROCK Copyright AMROCK Pty Ltd 2018 Examples of Experience Curves http//www.theenergycollective.com/noah-deich/2171221/problems-17t-save-planet-headlines 0.1/W by 2032 Most recent data 11/W for a nuclear power plant 2018. Cum. Capacity 393GW 14 AMROCK Copyright AMROCK Pty Ltd 2018 Which Si Technology Putting efficiency numbers in perspective 29.4 Limit for Silicon one-sun cell single junction 26.7 Most efficient single-Junction Silicon one-sun cell n-type IBC a-Si Kaneka 23.6 PERC Mono p-type Longi 22.3 Multi n-type ISE 22.04 PERC Multi p-type Jinko 25 PERC p-type Mono UNSW Numbers in red are for total-area efficiencies 25.8 n-type Mono ISE 25.04 n-type Mono IBC Trina 6” 25.2 n-type Mono IBC SunPower 5” IBC Structure Top-down Structure With passivated contacts 26.1 p-type Mono IBC ISH 15 AMROCK Copyright AMROCK Pty Ltd 2018 Examples of technology choices the winners are in Red IBC PERC HIT PERC N-type P-type Smart Wire Multi Busbar Slurry Wire Saw Diamond Wire Saw Mono Multi Single Junction Tandem Junction 16 AMROCK Copyright AMROCK Pty Ltd 2018 Global PV Market Module Efficiency Co st / P rice /W Linear region 0.01/W 3 rel. for 10W 4 rel. increase per module Exponential region Driven by LCOE Not Driven by LCOE Driven by - Power density - Aesthetics - Shape - Special features Min Effic. Accepted by Market 15 Moving up 2 rel./year P-type Multi and Mono Al-BSF and PERC P-type bifacial Other Silicon technologies PV Technologies recently moving to the Linear Region MBB, Half-cell, Bifacial, N-type PERT Too expensive to be considered for Low-LCOE technologies IBC, HJ, HIBC Possible future “movers” HJ, Passivated Contacts cells 17 AMROCK Copyright AMROCK Pty Ltd 2018 Will mc-Si continue dominating Data From F. van Mierlo, Navigant Consulting 2008 report 1980-1998, March issues of Photon International 1999-2009, IHS Q4-2015 Market Report 2010-2015 Multi-Si p-type Mono-Si p-type Thin-Films Other PV technologies Mono-Si n-type 18 AMROCK Copyright AMROCK Pty Ltd 2018 Manufacturing Cost and Power Output Existing Commercial P-type PV Products 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 250 270 290 310 330 350 370 390 410 Ma nu fac turing Cos t J uly 20 18 US /W 60-cell Module Power W Multi p-type additives Multi p-type MCCE Multi P-type PERC add. Mono P-type 0.01/10W linear Mono PERC 19 AMROCK Copyright AMROCK Pty Ltd 2018 Manufacturing Cost and Power Output Existing Commercial P-type PV Products 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 250 270 290 310 330 350 370 390 410 Ma nu fac turing Cos t J uly 20 18 US /W 60-cell Module Power W Multi p-type additives Multi p-type MCCE Multi P-type PERC add. Mono P-type 0.01/10W linear Mono PERC Power /- 5W Cost /- 0.02/W US0.01/10W Line of “Equal LCOE” Minimum Power 15.5 efficiency Power increase 5W/year 20 AMROCK Copyright AMROCK Pty Ltd 2018 Manufacturing Cost and Power Output Existing Commercial P-type PV Products 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 250 270 290 310 330 350 370 390 410 Ma nu fac turing Cos t J uly 20 18 US /W 60-cell Module Power W Multi p-type additives Multi p-type MCCE Multi P-type PERC add. Mono P-type 0.01/10W linear Mono PERC Power /- 5W Cost /- 0.02/W US0.01/10W Line of “Equal LCOE” Minimum Power 15.5 efficiency Power increase 5W/year Above the Line “loser technologies” Below the Line “Winner Technologies” 21 AMROCK Copyright AMROCK Pty Ltd 2018 Manufacturing Cost and Power Output Existing Commercial P-type PV Products 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 250 270 290 310 330 350 370 390 410 Ma nu fac turing Cos t J uly 20 18 US /W 60-cell Module Power W Multi p-type additives Multi p-type MCCE Multi P-type PERC add. Mono P-type 0.01/10W linear Mono PERC Power /- 5W Cost /- 0.02/W US0.01/10W Line of “Equal LCOE” Minimum Power 15.5 efficiency Power increase 5W/year Above the Line “loser technologies” Below the Line “Winner Technologies” Below the Line “SUPER Winner Technologies” Above the Line “Niche Market Technologies” 22 AMROCK Copyright AMROCK Pty Ltd 2018 Manufacturing Cost and Power Output Adding Commercial N-type PV Products 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 250 270 290 310 330 350 370 390 410 Manufacturing Cost Jul y 20 18 US /W 60-cell Module Power W N-Type HJ N-Type IBC Line of “Equal LCOE” LCOE-Driven Products Niche Products 23 AMROCK Copyright AMROCK Pty Ltd 2018 Manufacturing Cost and Power Output Adding new N-type Cell Technologies 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 250 270 290 310 330 350 370 390 410 Ma nu fac turing Cos t J uly 20 18 US /W 60-cell Module Power W IBC HJ N-type PERT Topcon P-type Cell Technologies N-type Cell Technologies Cost /- 0.02/W Power /- 5W New Winning Cell Technologies 24 AMROCK Copyright AMROCK Pty Ltd 2018 Manufacturing Cost and Power Output Impact of Larger Wafers M4 instead of M2 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 250 270 290 310 330 350 370 390 410 Ma nu fac turing Cos t J uly 20 18 US /W 60-cell Module Power W M4 Wafers 161.7mm New Super Winning technologies IBC HJ PERT Topcon P-type Cell Technologies 25 AMROCK Copyright AMROCK Pty Ltd 2018 What is next Simple P/N Junction Screen Printed Solar Cell Selective Emitter Solar Cell Local BSF PERL Mono- Crystalline Silicon PERL Passivated Contacts Tandem Solar Cell P N P N Ag finger Screen printed PERC/PERL solar cell 26 AMROCK Copyright AMROCK Pty Ltd 2018 What is next Simple P/N Junction Screen Printed Solar Cell Selective Emitter Solar Cell Local BSF PERL Mono- Crystalline Silicon PERL Passivated Contacts Tandem Solar Cell P N P N Ag finger Screen printed PERC/PERL solar cell Ag finger Screen printed PERC/PERL solar cell Tunnel Oxide Metal PolySi, a-Si, . Passivated Selective Contact 27 AMROCK Copyright AMROCK Pty Ltd 2018 Why not jumping directly to Si-based tandem Si/II-V thin-film Low-cost Reliable Would probably be a mechanical stack No high-efficiency thin-film at Eg 1.7eV No monolithic structure Si/III-V Reliable High-Efficiency Most studied PV material after Si Too expensive We need to develop a fast and low cost deposition method Deposition on a surface that is not polished Si/Perovskite High-efficiency 27 possible Low-cost New material Reliability over 25 years is questionable Even if Perovskite material is very inexpensive, the monolithic integration can be expensive ❖ For a monolithic tandem, it would be preferable to have passivated contacts ❖ For Passivated Contact cells, p-type technology loses its advantages. N-type is preferred. 28 AMROCK Copyright AMROCK Pty Ltd 2018 Manufacturing Cost and Power Output Are Tandem Structures other winning technologies 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 250 270 290 310 330 350 370 390 410 Ma nu fac turing Cos t J uly 20 18 US /W 60-cell Module Power W Si/Perovskite Tandem Structures M4 IBC PERT TopconPERC Assumptions Top cell efficiency 16 Additional Perovskite cost 38/module Additional Passivation cost 10/module PERC/PERT Additional 4T/2T converter 20/module IBC only HJ 29 AMROCK Copyright AMROCK Pty Ltd 2018 Conclusions ➢ Zero Net CO2 Emissions needed and massive CO2 beyond 2050 ➢ 100 Renewable Target means 80 to 100TW of PV cumul. capacity ➢ Crystalline Si technologies have the highest Learning Rate LR ➢ The PV market is divided into ➢ “LCOE-Driven Market” with linear Price/W vs. Module Power ➢ US0.01 for every 10W increase 60-cell Module ➢ “Niche Market” with “exponential” Price vs. Module Power ➢ N-PERT, TOPCON and Si/Perovskite Tandem will become the new technology winners ➢ Conversion to M4 wafers will accelerate this trend. ➢ Possible “SUPER Winner” N-type PERT or Topcon/Perovskite Tandem on M4 wafers AMROCK THANK YOU Pierre Verlinden pjverlindenieee.org Acknowledgement Thanks to all our colleagues at Trina Solar, in particular, Feng ZhiQiang, Pietro Altermatt, Zhang Xueling, Yang Yang, Xu Guanchao. Thanks to Martin Green for providing some slides.