武汉地区光伏组件最佳倾角的实验研究
第 33 卷 第 34 期 中 国 电 机 工 程 学 报 Vol.33 No.34 Dec.5, 2013 98 2013 年 12 月 5 日 Proceedings of the CSEE 2013 Chin.Soc.for Elec.Eng. 文章编号 0258-8013 2013 34-0098-08 中图分类号 TM 61 文献标志码 A 学科分类号 470⋅40 武汉地区光伏组件最佳倾角的实验研究 陈正洪 1 ,孙朋杰 1 ,成驰 1 ,严国刚 2 1.湖北省气象服务中心,湖北省 武汉市 430074; 2.武汉日新科技股份有限公司,湖北省 武汉市 430074 Experimental Research on the Optimal Tilted Angle for PV Modules in Wuhan CHEN Zhenghong 1 , SUN Pengjie 1 , CHENG Chi 1 , YAN Guoguang 2 1. Hubei Provincial Meteorological Service Center, Wuhan 430074, Hubei Province, China; 2. Wuhan Rixin Technology Co., ltd, Wuhan 430074, Hubei Province, China ABSTRACT To achieve the optimal tilted angle OTA in the actual atmospheric environment and reveal the differences between it and the theoretical values, a series of comparative observational experiments were carried out with 15 pieces of different tilted photovoltaic short for PV modules. It is found that the daily and annual variation of the PV power generation of all modules showed a single peak. The observed OTA in winter half year except March is 45, which is greater than the latitude angle, and the power generation can be increased by up to 63 compared with the horizontal module at the same period. The observed OTA in the summer half year is between 5 and 20, which is less than the latitude angle, and the increasing rate of power generation is no more than 10 compared with that of the horizontal module. The OTAs in four seasons are 20、 10、 30 and 45 respectively. The annual power generation of the OTA module 30 is 19 higher than that of 0 module. The changing trend of measured OTA is consistent with the theoretical calculation results and the measured value is greater than or equal to the calculated results except November and December. The available energy calculated by sky anisotropic model is higher than that calculated by sky isotropic model, the difference can be up to 6.8 in winter. To increase decrease the inclination of PV array in winter summer will increase power generation significantly to a certain degree. For adjustable PV array, there will be high power generation efficiency with OTA adjusted in March, May, September and October. The results can provide reference for applying solar energy resources to the most degree. KEY WORDS photovoltaic PV; the optimal tilted angle 基金项目财政部行业 气象 科研专项GYHY201306090 , GYHY201006036 ;华中区域气象中心科技发展基金重点项目 QY-Z-201203;湖北省气象科技发展基金项目2013Q06 。 Public Sector meteorological Research Item of MOF GYHY201306090, GYHY201006036; Meteorological Sci. power generation; sky isotropic model; sky anisotropic model. 摘要为求得大气环境下光伏组件的最佳倾角及其与理论值 的差异,在武汉地区开展了 15 块正南朝向、不同倾角光伏 组件发电的一年期对比观测与统计分析。结果表明所有组 件发电量为单峰型年、日变化;最佳倾角在冬半年3 月除 外均为 45,即大于纬度角,其发电量比水平面增幅大,最 大达 63,在夏半年为 520即小于纬度角,其发电量比 水平面增幅较小,不超过 10;四季最佳倾角分别为 20、 10、 30、 45,年最大倾角为 30,其发电量比水平面高 19;实测与理论推算的逐月最佳倾角趋势一致,且高于或 等于理论值11、 12 月除外;天空各向异性模型最佳倾角斜 面获取的能量多于各向同性模型,冬季相差可达 6.8。冬 季增大光伏阵列倾角或夏季减小光伏阵列倾角,会使发电效 果得到明显或一定改善;对可调光伏阵列,一年调节 4 次 3、5、9、10 月,就能达到较高的发电效率。研究成果对 最大程度利用太阳能资源具有指导作用。 关键词光伏;最佳倾角;发电量;天空各向同性模型;天 空各向异性模型 0 引言 通常,地面光伏发电系统中的电池阵列均采取 倾斜安装,以比水平安装获取更多的太阳辐射,从 而增加发电量。而不同倾角的阵列表面接收的太阳 辐射是不同的,发电能力就有差异,因此就有最佳 倾角的问题 单位时间内获取太阳辐射或发电量最 大的倾角为最佳倾角,并有月、季、半年、年最佳 倾角之分 。确定阵列最佳倾角是光伏发电系统设计 中不可缺少的重要环节 [1] 。 关于最佳倾角的确定已有大量研究,但以理论 模拟计算为主 [2-7] ,其基本理论原理均是通过水平面 的直接辐射和散射辐射推算斜面的总辐射,其中斜 第 34 期 陈正洪等武汉地区光伏组件最佳倾角的实验研究 99 面的直接辐射增加、散射辐射减少、多了一个反射 辐射项,或冬半年总辐射增多、夏半年辐射减少, 最终结果是总辐射增多。由于考虑电力接入方式的 差异 离网或并网 ,以及研究方法、区域、辐射数 据等差异,得到的结果差别较大,不同学者、甚至 同一学者对同一地区计算出的最佳倾角也不同。以 武汉地区为例,不同学者对该地区最佳倾角的计算 结果在 1845 [8-11] 之间,差别较大。近年来阳光地 带国家如中东地区埃及、伊朗等国研究人员开始进 行不同倾角斜面辐射的比较性试验,以确定具体某 个地区的最佳倾角 [12-13] ,得到一些有意义的结果, 但斜面角度的分布有限,不够完整,对结论有一定 影响,而佐以试验多角度光伏观测系统验证实际光 伏发电最佳倾角更是不多见 [14] 。 为了得到武汉地区光伏系统安装的最佳倾角, 在湖北省气象局预警大楼楼顶的 18 kW太阳能光伏 发电示范电站进行了一系列的对比观测研究,从水 平面0 到南墙面90 计 15个不同倾角和朝向的太 阳电池组件发电情况进行了为期一年的测试。通过 分析不同倾角太阳电池组件不同时间尺度 月、季、 年 的发电差异,确定武汉地区各时间尺度的光伏阵 列最佳倾角,并与理论推算结果进行对比分析,寻 找其中的差异和原因,从而为武汉地区光伏发电系 统设计、功率预报等提供了重要依据,为其他地区 的光伏阵列安装角度的选取方法提供一定的指导、 借鉴作用。 1 实验设计、资料与方法 1.1 实验设计 本项目太阳电池组件最佳倾角测试系统由光伏 组件部分和数据采集部分组成。其中太阳电池组件 部分包含 17 块功率为 90Wp 的 MBF90 多晶硅太阳 电池组件,分别按不同倾角安装 水平、正南方向 5、 10、 15、 20、 25、 30、 35、 40、 45、 50、 60、 70、 80、 90、东墙 90、西墙 90,各电池组件标 称技术参数如表 1 所示。根据湖北省气象局预警大 楼楼顶安装场地实际情况及充分考虑周边建筑物对 太阳电池组件和太阳电池组件相互之间的阴影遮挡 后,本系统 17 块太阳电池组件采用固定角度并排安 装及帆船形状安装结合的方式,如图 1 所示。 数据采集系统由 1 台可编程直流电子负载、 1 台多路切换仪、 1 块 PCI 切换卡、 17 个 DS18B20 温 度传感器、 1 台 STA-D 型 DS18B20 采集模块、测试 软件和 1 台工控机组成,其中测试软件如图 2 所示。 表 1 各太阳电池组件标称技术参数 Tab. 1 Technical data of PV modules 倾角/ 序列号 开路 电压/V 短路 电流/A 功率/ W 最佳工 作电压/V 最佳工作 电流/A 填充因 子/ 0 10117942 21.1 5.44 89.7 17.7 5.07 78.2 5 10117947 21.1 5.46 89.8 17.6 5.09 77.8 10 10117937 21.1 5.36 88.8 17.9 4.96 78.5 15 10117939 20.9 5.47 89.6 17.6 5.1 78.5 20 10117948 21.1 5.39 89.9 17.8 5.07 79.4 25 10117946 21.1 5.48 90.4 17.6 5.12 77.9 30 10117949 21.2 5.5 91.1 17.7 5.14 78.0 35 10117943 21.1 5.46 90 17.7 5.09 78.2 40 10117941 21.1 5.5 90.4 17.6 5.13 77.8 45 10117940 21.1 5.5 90.6 17.6 5.14 78.0 50 10117934 21.1 5.49 90.6 17.7 5.13 78.4 60 10117938 21.1 5.51 90.6 17.6 5.14 77.8 70 10117936 21.1 5.44 89.7 17.7 5.08 78.3 80 10117944 21.2 5.44 90.2 17.7 5.09 78.1 90 10117933 21.1 5.47 90 17.6 5.11 77.9 东墙 90 10117935 21.1 5.45 89.8 17.6 5.1 78.1 西墙 90 10117932 21 5.46 89.7 17.6 5.09 78.1 a 水平面、正南方向 550电池组件 b 正南方向 6090、东墙 90、西墙 90电池组件 图 1 17 块多倾角安装太阳电池组件外观图 Fig. 1 Seventeen pieces of different tilted photovoltaic modules 100 中 国 电 机 工 程 学 报 第 33 卷 图 2 太阳电池组件最佳倾角测试软件 Fig. 2 Data testing software of the optimal tilted angle test system 系统中 17 块太阳电池组件的正负极分别连接 到多路切换仪的输入端子上,输出端子连接到电子 负载的输入端子上,多路切换仪在 PCI 切换卡的控 制下一次接通一块太阳电池组件,电子负载在工控 机的控制下,采取先粗略搜索再精确搜索的两段搜 索方式,可快速准确跟踪到最大功率点 P max ,同时 测出开路电压及短路电流。在 90 s 内完成对 17 块 太阳电池组件的所有数据检测,电压、电流及最大 功率的检测误差小于 0.5。 1.2 资料情况 资料时段2011 年 7 月至 2012 年 6 月。 发电资料正南朝向、不同倾角安装的 15 块 90 W 电池组件逐 90 s1.5 min的发电功率数据,并 将其转化为分钟、小时发电量数据。 辐射资料水平面逐分钟直接、散射、总辐射 数据,并转化为小时数据。 1.3 方法 为比较实验值与理论推算值的差异,根据 Liu 和 Jordan 提出的天空散射辐射各向同性模 型 [15-16] 下称各向同性模型 和天空散射辐射各向异 性 HDKR 模型 [17-19] 下称各向异性模型 分别计算与 实际倾角相同斜面15 个角度 的理论逐时太阳辐照 量。根据天空各向异性模型理论,在北半球,南面 天空的平均散射辐射要比北面天空大,所以各向异 性模型推算的朝南斜面获取的能量比值要大于同 性模型的结果。 对于各向同性模型,各斜面理论逐时太阳总辐 照量计算公式为 Tbbd 1 cos 1 cos 22 IIRI I β β ρ − 1 对于各向异性 HDKR 模型,各斜面理论逐时太 阳总辐照量计算公式为 Tbd bd 3 1cos 1 2 [1 sin / 2] 1 cos / 2 ii IIIARI A fI β βρβ − − ⋅ 2 式中 I b 为水平面上的小时太阳直接辐照量; I d 为 水平面上的小时太阳散射辐照量; R b 为倾斜面与水 平面小时直射辐照量比; β为斜面倾角; ρ为地面反 射率,本文取 0.2; I 为水平面上的小时太阳总辐照 量; b 0 / i A II ; b /f II ; I 0 为大气层外的小时 太阳总辐照量。 在光伏组件将吸收的太阳辐射转换成直流输 出的过程中,考虑到辐照度、温度对光电转换效率 的影响,同时考虑到灰尘、直流回路线路损失等, 最终逐小时输出直流电的表达式为 dc s c 1 2 3 4 [1 25 ] / 3.6ETISKKηα− − ℃ 3 式中 E dc 为光伏组件的逐时直流发电量, kW⋅h; η s 为标准测试条件下的光电转换效率; I 为倾斜面 逐小时太阳总辐射, MJ/m 2 ; S 为光伏组件有效面 积, m 2 ; α为温度系数,℃ −1 ; T c 为阵列板温,℃; K 1 为光伏组件老化损失系数; K 2 为光伏阵列失配损 失系数; K 3 为尘埃遮挡系数; K 4 为直流回路线路损 失系数。 根据各斜面理论逐时太阳总辐照量及直流电 的表达式,可计算得到光伏组件不同倾斜面的理论 发电量。将各斜面理论发电量与水平面 0发电量 相比,所得结果为 dc s c 1 2 3 4 dc0 s0 c0 0010203040 [1 25 ] [1 25 ] x x x xx xxxx ETISKKη α ηα − − −− ℃ ℃ 4 式中 E dcx 为倾斜面上光伏组件的直流发电量; E dc0 为水平面上光伏组件的直流发电量; I x 为倾斜面上 太阳总辐射;I 0 为水平面上太阳总辐射。 由于光伏组件在倾斜面与水平面的 η s 、 K 1 、 K 2 、 K 4 相同,且短时间内不同倾斜面 T c 也认为相同, 因此光伏组件在不同倾斜面与水平面的理论发电 量之比可简化为 dc dc0 3 0 30 // xxx EE IKIK 5 即光伏组件在各斜面与水平面的发电量之比 能量 比 与各倾斜面接收的太阳总辐射和灰尘遮挡系数 有关,根据能量比可得到各月或年的最佳倾角。 2 结果分析 2.1 正南朝向、不同倾角电池组件发电量分析 2.1.1 日变化 对于确定的地点,当地理和气象条件一定时, 第 34 期 陈正洪等武汉地区光伏组件最佳倾角的实验研究 101 方阵的不同安装角度可能造成发电量差距很大。 图 3 是朝南方向不同倾角太阳电池组件发电量日变 化曲线,由图可见,一天之中不同倾角电池组件小 时发电量均存在明显的单峰型变化特征。但因倾角 的不同,其发电量也存在明显的差异,其中 2530 倾角电池组件发电量在各电池组件中较大;90 倾 角电池组件发电量最小。 16 12 8 4 0 5 7 9 11 13 15 17 19 小时 发电量/ kW ⋅ h 0 5 10 15 20 25 30 35 40 45 50 60 70 80 90 图 3 朝南方向不同倾角电池组件小时发电量日变化 Fig. 3 Daily change of power generation of PV modules with different angle toward south 为分析不同倾角电池组件在不同天气类型下 发电情况的异同,选取了 2 种典型的天气类型 即晴 天、阴雨天 , 分析每种天气条件下光伏阵列辐照量、 发电量变化。 选取 2011 年 7 月 9 日为晴天代表日,2012 年 6 月 26 日为阴雨天代表日。对比 2 种不同天气类型, 在晴日,各小时太阳总辐照量较大且呈单峰型变 化,在阴雨日,各小时太阳总辐照量很小,也无变 化规律可循。具体变化情况如表 2 所示。 表 2 典型晴、雨日水平面太阳总辐照量变化 Tab. 2 Daily change of horizontal surface radiation in typical sunny day, rainy day 总辐照量/MJ/m 2 小时 晴日 雨日 6 0.11 0.03 7 0.65 0.09 8 1.36 0 9 2.08 0.24 10 2.66 0.43 11 3.04 0.52 12 3.3 0.42 13 2.99 0 14 2.69 0 15 2.11 0 16 1.71 0 17 1.11 0 18 0.41 0 另外,从晴日不同倾角太阳电池组件的发电量 变化曲线看,各电池组件小时发电量也呈单峰型变 化特征,如图 4a所示。由于选取的典型日在夏季, 此时太阳高度角处于全年中较大时期,且晴天日照 充足,因此较低倾角030 发电量大,随倾角的 增大发电量逐渐降低,至 90倾角降至最低。 由图 4b可知,由于 9 h 开始有降水,各电池 组件此时发电量有所下降, 10 h 降雨停止,发电量 上升,午后降水增多,各电池组件发电量下降,全 天发电量小,变化规律不明显。由于该日为阴雨天 气,直接辐射全天较小,太阳总辐射主要以散射辐 射的形式到达组件表面,电池组件对应的天空开阔 程度决定了接受散射辐射量的多少,因此,随着倾 角的增加,发电量依次减小,至 90倾角时,由于 电池组件只能接收天空一半面积的散射辐射,因此 发电量也为最小。 0.07 0.05 0.03 0.01 5 7 9 11 13 15 17 19 小时 a 晴日 发电量/kW ⋅ h 0 5 10 15 20 25 30 35 40 45 50 60 70 80 90 降水量 0.07 0.05 0.03 0.01 小时 b 雨日 发电量/kW ⋅ h 0 5 10 15 20 25 30 35 40 45 50 60 70 80 90 0 2 8 12 16 20 224 6 10 14 18 4.5 3.5 2.5 1.5 0.5 降水量/mm 图 4 典型晴日、雨日不同倾角光伏组件发电量变化 Fig. 4 Change of power generation of PV modules with different angle toward south in typical sunny day, rainy day 2.1.2 月变化 为了更详细地了解不同倾角光伏阵列的发电 量情况,本实验统计了朝南方向不同倾角光伏阵列 逐月发电变化,如图 5 所示。 可以看到,一年之中,不同倾角在不同月份发 电量存在明显的波动性变化。近水平倾角020 102 中 国 电 机 工 程 学 报 第 33 卷 14 10 6 2 1 3 5 7 9 11 月 发电量/kW ⋅ h 0 5 10 15 20 25 30 35 40 45 50 60 70 80 90 图 5 朝南方向不同倾角逐月发电量变化 Fig. 5 Monthly change of power generation of PV modules with different angle toward south 在夏季发电较大,但在其他季节,尤其在冬季,由 于太阳高度角较小,水平安装的电池组件接收的太 阳辐射较少,发电量处于较低水平。从图上看,水 平 0电池组件在与垂直90 放置电池组件发电量 曲线分别在 11 月及次年 2 月相交,说明 11 月至 2 月期间,垂直电板发电量要高于水平电板发电量, 此时较大倾角能够更好地接收太阳辐射,有利于发 电。另外,比较春、秋两季发电情况,从图中可以 看到,在同样的倾斜角度下,春季发电要低于秋季, 可能是由于湖北省每年春季三月到四月底,经常发 生 5 天甚至 10 天以上的连阴雨天气 [13] ,造成这段 时间内发电较少。从全年发电情况看, 2535倾角 电池组件全年各月发电量均处于较高水平。 分别统计各月不同倾角太阳电池组件发电情 况,以发电最多的电池组件倾斜角度为当月最佳倾 角。各月不同电池组件最佳发电倾角实际变化情况 如图 6 所示,由图 6 可知从 1 2、 10 12 月 5 个 月的最佳发电倾角为 45,即在冬半年,较大的倾斜 角度有利于太阳电池发电;在夏半年 3 9 月 ,随 着太阳高度角的增加,光伏阵列最佳发电倾角降低, 3、 4 月最佳发电倾角分别为 30、 20, 5 月为 10, 至 6 月降至最低,最佳发电倾角为 5。 7、 8 两个月 的最佳发电倾角均为 10, 说明夏半年太阳高度角较 大,太阳电池组件较小的安装倾角有利于光伏发电。 总之,夏半年光伏方阵最佳倾角要小于当地纬度, 冬半年光伏方阵最佳倾角要大于当地纬度。对于可 调节倾角的光伏阵列,一年之中只需调节 4 次 3 月、 5 月、9 月、10 月 ,就能使得光伏阵列基本保持在 最佳倾角状态,达到较高的发电效率。对于固定式 光伏阵列而言,如何放置组件倾斜角度,使得其全 年发电量能达到较高水平,则需要对各电池组件全 年发电情况进行分析,进而得出结论。 1 3 5 7 9 11 月份 倾角/ 60 20 0 40 天空各向异性模型 天空各向同性模型 实验值 图 6 实测与理论推算的各月最佳倾角变化 Fig. 6 Monthly change of optimum tilt angle with measurement and theoretical calculation 2.1.3 四季及年变化 图 7 表示一年四季中朝南方向不同倾角发电总 量变化。春、夏、秋、冬四季发电量最大值对应的 安装倾角分别为 20、 10、 30、 45发电量分别为 24.02、 31.86、 23.99、 16.88 kW⋅h。从图 7 看,在 春秋季节,25 左右倾角使得发电量较大且较为接 近,此时,夏季发电量随倾角增加处于下降状态, 冬季发电量随倾角增加处于上升状态。在冬季,安 装倾角在 45左右发电量最大,但此安装角度在夏 季呈较低发电水平。同样,夏季的最佳安装倾角 5 在冬季亦处于较低发电水平。因此,不存在一个安 装倾角使得春夏秋冬四季发电量相等,即 4 条曲线 没有一个共同的交点。 倾斜角度/ 发电量/kW ⋅ h 35 15 5 25 冬季 春季 夏季 秋季 0 10 20 30 40 50 9070 图 7 朝南方向不同倾角四季发电总量变化 Fig. 7 Change of total power generation of PV modules with different angle toward south in different seasons 为了更直观地表示不同倾角全年发电情况,统 计了朝南方向不同倾角电池组件 2011 年 7 月至 2012 年 6 月一整年的总发电量情况。不同倾斜角度 光伏阵列年总发电量变化如图 8 所示,由图 8 可知, 30光伏阵列年总发电量最大,为 100.3 kW⋅h,比水 平面高出 19。 2545倾角阵列年发电量较大, 均处在 95 kW⋅h 以上,随着倾斜角度的继续增大, 发电量逐渐减小,至 90倾角阵列年发电量减至最 小。020 倾角虽然在夏季发电较大,但在冬半年 由于倾斜角度较小,接受太阳辐射较少,因此全年 发电量并不理想。表 3 统计了不同倾角光伏阵列每 峰瓦组件每年发电量情况,由表 3 可知, 2545 第 34 期 陈正洪等武汉地区光伏组件最佳倾角的实验研究 103 倾斜角度/ 发电量/kW ⋅ h 0 10 20 30 40 50 9070 105 85 95 75 65 图 8 朝南方向不同倾角年发电量变化 Fig. 8 Annual change of power generation toward south 表 3 朝南方向不同倾斜角度光伏阵列每峰瓦/ 每年发电量 Tab. 3 Per peak watt/per year power generation of PV modules with different angle 倾角/ 0 5 10 15 20 25 30 35 发电量/kW ⋅h 0.94 1.02 1.06 1.08 1.10 1.10 1.11 1.11 倾角/ 40 45 50 60 70 80 90 发电量/kW ⋅h 1.11 1.11 1.09 1.00 0.93 0.85 0.73 倾角每峰瓦发电量较大。综合年总发电及每峰瓦发 电情况看,30 左右为最佳发电倾角。 2.2 实验结果与理论推算结果的对比 将理论计算的各月最佳倾角与实际实验情况 下的各月最佳倾角进行对比,如图 6 所示。 可以看到,实际情况下各月最佳倾角与理论计 算最佳倾角变化趋势基本保持一致。总体来说,实 际情况下各月最佳倾角要大于或等于理论推算最 佳倾角,只有 11、 12 月的最佳倾角低于天空各向 异性模型推算值。因此,对固定式光伏阵列,年最 佳倾角应略大于理论计算值。另外,由图 6 可知, 一年之中,最佳倾角在春季的 3 月和秋季的 9 月发 生突变。因此,选取 3、 7、 9、 12 月为代表月,分 析各月倾角的不同造成能量或发电量的变化,如 图 9 所示。 根据图 9,实际情况下,3 月与 9 月的最佳倾 角均为 20, 与水平面的能量比则分别为 1.20、 1.13。 按照理论推算,此倾斜角度与水平面在天空各向异 性模型情况下的能量比分别为 1.06、 1.03,在天空 各向同性模型情况下能量比分别为 1.04、 1.02。理 论推算值均小于实际值,这 2 个月,倾斜 20放置 的光伏阵列实际值要比理论值多输出 9.715.4 的电能。从式5 中可以看出,影响倾斜面与水平面 能量比的因子有 2 个,即到达地面的太阳辐射和灰 尘遮挡系数,在实际发电过程中,光伏组件安装倾 角越接近水平面,受灰尘遮挡越严重。因此,实际 情况下的能量比要比理论计算大。 7 月,由于太阳高度角处于全年最大时段,较 倾斜角度 / a 3 月 能量比 0 10 20 30 40 50 9070 各向同性 各向异性 实验值 1.4 0.8 1.2 0.6 0.4 1.0 倾斜角度 / b 7 月 能量比 0 10 20 30 40 50 9070 1.2 0.8 1.0 0.6 0.4 各向同性 各向异性 实验值 倾斜角度 / c 9 月 能量比 0 10 20 30 40 50 9070 各向同性 各向异性 实验值 1.4 0.8 1.2 0.6 0.4 1.0 倾斜角度 / d 12 月 能量比 0 10 20 30 40 50 9070 各向同性 各向异性 实验值 1.4 0.8 1.2 0.6 0.4 1.0 图 9 各代表月不同倾斜面与水平面所接收能量的比值 Fig. 9 Energy ratios of different tilted plane and horizontal module in representative month 小倾角接受太阳辐射较多。根据理论计算天空各 向异性模型推算的 5倾斜面获得最多的能量,仅比 水平面多出 0.1; 天空各向同性模型推算水平面获 得能量最多。实测情况下 10倾角光伏阵列输出电 能最多,其与水平面阵列的能量比为 1.04,增幅较 小,但相对较高倾角增幅可达 5060 10080。随着角度的增加,无论是各向同性模 型还是各向异性模型,斜面获得能量急剧下降,实 测发电量也呈相同的变化趋势。说明在夏季,较小 倾角 10光伏阵列发电量大且基本接近。 12 月,由于太阳高度角处于全年最小时段,较 104 中 国 电 机 工 程 学 报 第 33 卷 大倾角接受太阳辐射明显增多。天空各向同性模型 推算的最佳倾角与水平面的能量比为 1.32,各向异 性模型推算的最佳倾角与水平面的能量比为 1.43, 两者相差 6.8。而实测情况最佳倾角 45与水平 面的能量比达到了全年最高的 1.63,相比水平面发 电量增幅很大,最大达 63。可见在冬季,天空 各向异性模型比各向同性模型最佳倾角斜面获取 的能量多;提升光伏阵列安装倾角,会使发电效果 得到显著的提升。 3 结论 通过分析湖北省气象局太阳能光伏电站正南 朝向、不同倾角的 15块电池组件 2011年 7月至 2012 年 6 月一年的发电情况,得到如下结论 1)一天之中,不同倾角电池组件小时发电均 存在明显的单峰型变化特征。但因倾斜角度的不 同,其发电量也存在明显的差异,其中, 2530 倾角电池组件发电量在各电池组件中较大。在晴 日,各电池组件小时发电情况也是呈单峰型变化。 在阴雨日,全天发电量小,变化规律不明显。 2)冬半年 1 2、 10 12 月 最佳发电倾角为 45,相比水平面发电量增幅很大,最大达 63。 夏半年 3 9 月 最佳发电倾角为 520之间,即均 小于纬度角,最佳倾角斜面相比水平面发电量增幅 较小,最多不超过 10,但相对较大倾角增幅可达 506010080。 3)春、夏、秋、冬四季最佳倾角分别为 20、 10、 30、 45, 30倾角光伏组件年发电量最大, 比水平面高出 19。 3045倾角阵列年发电量 较大。 4)对于可调节倾角的光伏阵列,一年之中只 需调节 4 次 2、 4、 8、 9 月 ,就能使得光伏阵列基 本保持在最佳倾角状态,达到较高的发电效率。对 固定光伏阵列,年最佳倾角应略大于理论计算值, 武汉地区为 2530。 5)根据天空各向异性模型推算的最佳倾角斜 面获取的能量多于各向同性模型的结果,以冬季相 差最大可达 6.8。冬季 夏季 ,增大 减小 光伏阵 列安装倾角,会使发电效果得到明显 一定 改善。 从本实验的结果分析看, 30左右倾角较为适 合湖北省气象局太阳能光伏电站光伏阵列发电出 力,也可以认为此角度为武汉地区光伏阵列最佳倾 角。但此角度是仅在一年的发电数据的基础上统计 出来的,由于时间序列较短,可能造成随机因素较 大,难免受到当年天气 例如长期阴雨或干旱 的影 响,且光伏电站倾角较小的电池组件较易积灰,影 响电池组件接收太阳辐射,对发电量造成一定影 响,需要收集更长时间资料进行深入分析。 参考文献 [1] 杨金焕.固定式光伏方阵最佳倾角的分析[J] .太阳能学 报,1992,13186-92. Yang Jinhuan. Analysis of optimum tilted angle for fixed photovoltaic[J]. Acta Energiae Solaris Sinica, 1992, 13186-92in Chinese . [2] 韩斐,潘玉良,苏忠贤.固定式太阳能光伏板最佳倾角 设计方法研究[J] .工程设计学报, 2009, 165 348-353. Han Fei, Pan Yuliang, Su Zhongxian. Research on optimal tilt angle of fixed PV panel[J].Journal of Engineering Design,2009,165348-353in Chinese . [3] 孙韵琳,杜晓荣,王小杨,等.固定式并网光伏阵列的 辐射量计算与倾角优化[J] .太阳能学报, 2009, 3012 1597-1601. Sun Yunlin , Du Xiaorong , Wang Xiaoyang , et al. Calculation of solar radiation and optimum tilted angle of fixed grid connected solar PV array[J].Acta Energiae Solaris Sinica,2009,30121597-1601in Chinese . [4] 刘振宇,冯华,杨仁刚.山西不同地区太阳辐射量及最 佳倾角分析[J] .山西农业大学学报自然科学版, 2011, 313272-276. Liu Zhenyu, Feng Hua, Yang Rengang. Analys