太阳电池的光衰现象说明
149286 2010/10http//www.materialsnet.com.twAn Introduction of Light-induced Degradation on Silicon Solar CellT. Y. Wang 1 C. L. Sun 2 C. H. Lin 3C. W. Lan 4GEL/ITRI 1 2 3 490Siemens ProcessPSolar photovoltaic PV energy will shortly be in great demand, since it is inexhaustible and cleanerthan any conventional energy resources. The global PV production will over 8 GW in 2010 alone, outof which, the majority is the silicon wafer-based solar cells. So far, most of solar grade silicon is from theSiemens process, which is energy intensive and high cost. Therefore, cheaper routes for producingsolar grade silicon are being developed in the PV industries, but the progress in slow. Therefore,seeking a feasible and low-cost route for producing silicon solar cell with high energy transferefficiency is important for the PV industry. Although the solar cell efficiencies made from Cz siliconwafer are already quite high, the light-induced degradation of minority carrier lifetime and cell efficiency,which is caused by a metastable defect under illumination, are still the problem. Far now the methodto avoid light-induced degradation is still under researching./Key WordsSilicon Solar Cell Degradation150286 2010/10http//www.materialsnet.com.tw5050190Czochralski Method; CzFloating Zone Method; FZCzCasting Method302Light-inducedDegradation or Illumination Degradation1973 Fischer Pschunder 3P-type CzBest Research-cell EfficienciesMultijunction ConcentratorsSingle-junction GaAsCrystalline Si CellsThin-Film TechnologiesEmerging PVThree-junction 2-terminal, MonolithicTwo-junction 2-terminal, MonolithicSingle CrystalConcentratorThin FilmSingle CrystalMulticrystallineThick Si FilmCuIn,GaSe2CdTeAmorphous SiH StabilizedNano-, Micro-, Poly-SiMultijunction PolycrystallineDye-sensitized CellsOrganic CellsVarious TechnologiesMatsushitaMonosolarBoeingKodakBoeingUniversityof MaineRCA RCA RCA RCARCA RCARCASolarexBoeingKodak Solarex ARCOAMETEKBoeingPhoton EnergyUnited SolarUniversitySo. FloridaEPFLUniversity Linz UniversityLinzGroningenSiemensPlextronicsSharpUnited SolarKaneka2 μ m on GlassEPFLBoeing Euro-CISNREL NRELNREL NRELNREL NREL NREL NREL NRELNRELUnited SolarUniv. Stuttgart45 μ m Thin-filmTransferSharpLarge-areaFhG-ISEFhG-ISEAmonix92x Conc.NRELCuIn,GeSe214x Conc.UNSWUNSWUNSWUNSWUNSWUNSWUNSW Georgia TechGeorgia Tech SharpVarianStanfordSpireSpireNo. CarolinaState Univ.Westing-houseARCOKopinStanford140x Conc.Varian216x Conc.NRELNRELJapanEnergySunPower96x Conc.NREL/SpectrolabSpectrolabBoeing-Spectrolab NRELInverted,Semi-mismatchedNRELInverted, Semi-mismatched, 1-sunBoeing-SpectrolabMetamorphic 40.733.827.624.720.319.916.512.111.15.41975 1980 1985 1990 1995 2000 2005 2010444036322824201612840EfficiencyNREL KonarkaUniv. LinzNRELCdTe/CISAstroPowerSmall-area2151286 2010/10http//www.materialsnet.com.tw200 C11.54-Boron-oxygen PairP-type BB Accepter BSubstitutionalB s B sOiB s-O 2i 5SiO SiO0.620.610.60VOCV36.035.535.034.034.50 1 2 3 4 5 6Time hourJSCmA/cm2V OCJSCa0 1 2 3 4 5 6Time hour787674FillFactor17.016.516.015.5EfficiencyFFEffb4SiB sOiO iBs-O 2i 5152286 2010/10http//www.materialsnet.com.tw6BaCO 3BaOBaSiO 3710ppma1518 ppmaP-typeP-type8 V oc9P-typeGallium P-type10k0 0.008Phosphorous N-type N-type11 N-type P-typeN-type1,000 W/m 20-1-2-3-4RelativeVocDegradation0 200 400 600 800 1000Illumination Time minσ 1.2 cm - No Illuminationσ 1.2 cm - 0.5 sunσ 1.2 cm - 1 sunσ 6.8 cm - 1 sun890080070060050040030020010001.00.80.60.40.20.0Ratioτ effμsBefore IlluminationAfter Illumination0.8/9.60.77/13.15.4/10.31.2/0.55.2/1.00.69/04.4/03.4/13.85.2/13.722/13.11BCz2BCz3BMCz4BMCz5BMCz6BFz7BFz8Ga Cz9Ga Cz10GaCzMaterialρ base cm/O i ppm9153286 2010/10http//www.materialsnet.com.twSANYO HITN-typeFZ FZ0.01 ppma12 25 PERL Passi-vated Emitter and Rear Locally-diffusedFZ 13MCz1 ppma103102101 0 20 40 60 80 100 120 140160 180 970Illumination Time minτ bμsCz p-Si10 cm, Ga10 cm, B1.5 cm, B1.0 cm, B1014 State A Annealed StateState B Degraded StateState B State C Regenerate StateLimB-doped P-type Cz-Si3 cmP-doped N-type Cz-Si3.5 cm100010010Lifetimeτμs20 6 8 104Illumination Time t hN-type P-type11State A‘ Annealed ’InactiveState B‘ Annealed ’ActiveState C‘ Regenerated ’InactiveDegradationRedegradationAnnealRegenerationDestabilizationStabilization14154286 2010/10http//www.materialsnet.com.tw151 sun 200 C1P-type11567567066566065564564065020.520.019.519.0EfficiencyηOpen-circuitVoltageVOCmV abIllumination atRoom TemperatureRISE-EWT Solar CellBulk Material 1.4- cm Cz-SiIllumination Intensity 100 mW/cm 20 1 2 10 15 20 3025Time t h1. T. Y. Wang, Y. C. Lin, C. Y. Tai, C. C. Fei, M. Y. Tseng, and C. W.Lan, “ Recovery of silicon from kerf loss slurry waste for photovoltaicapplications ” , Progress in Photovoltaics Research and Applications17 2009 pp.155-163.2. L. Kazmerski, D. Gwinner, and A. Hicks, National RenewableEnergy Laboratory NREL, 2007.3. H. Fischer and W. Pschunder, “ Investigation of photon and thermalinduced changes in silicon solar cells ” , 10th IEEE PhotovoltaicSpecialists Conference, 1973, pp.404-411.4. T. Y. Wang, T. Wang, Y. J. Chen, C. S. Kou, C. H. Chen, W. L.Chang, S. Y. Chen, C. H. Du, W. C. Sun, C. W. Lan, “ DeactivationTreatments of Silicon Solar Cells for Efficiency Recovery afterIllumination Degradation ” , 2009 MRS Fall Meeting, Boston, USA.5. J. Schmidt and Karsten Boethe, “ Structure and transformation of themetastable boron- and oxygen-related defect center in crystallinesilicon ” , Physical Review B 69 2004 pp.024107.6. S. Dubois, N. Enjalbert, and J. P. Garandet, “ Slow down of the light-induced-degradation in compensated solar-grade multicrystallinesilicon ” , Applied Physics Letters 93 2008 103510.7. R. L. Hansen, L. E. Drafall, R. M. McCutchan, J. D. Holder, L. A.Allen, and R. D. Shelley, “ Method for improving zero dislocationyield of single crystal ” , United State Patent 5,980,629. 1999.8. S. W. Glunz, S. Rein, W. Warta, and J. Knobloch, “ On the degrada-tion of Cz-silicon solar cells ” , Proceedings of the 2nd World Confer-ence on Photovoltaic Energy Conversion, 1998, pp.1343-1346.9. S. W. Glunz, S. Rein, J. Knobloch, W. Wettling and T. Abe,“ Comparison of boron- and gallium-doped p-type Czochralski sili-con for photovoltaic application ” , Progress in Photovoltaics Re-search and Applications 7 1999 pp.463-469.10. J. Schmidt, A. G. Aberle and R. Hezel, “ Investigation of carrierlifetime instabilities in Cz-grown silicon ” , 26th IEEE PhotovoltaicSpecialists Conference, 1997, pp.13-18.11. J. Schmidt, K. Bothe, R. Bock, C. Schmiga, R. Krain and R. Brendel,“ N-type silicon – the better material choice for industrial high-efficiency solar cells ” , 22nd European Photovoltaic Solar EnergyConference, 2007, pp. 998-1001, Milan, Italy.12. J. Zhao, “ Recent advances of high-efficiency single crystallinesilicon solar cells in processing technologies and substrate materials ”,Solar Energy Materials and Solar Cells 82 2004 pp.53-64.13. M. A. Green, “ The path to 25 silicon solar cell efficiency historyof silicon cell evolution ” , Progress in Photovoltaics Research andApplications 17 2009 183-189.14. A. Herguth, G. Schubert, M. Kaes and G. Hahn, “ Investigations onthe long time behavior of the metastable boron-oxygen complex incrystalline silicon ” , Progress in Photovoltaics Research and Appli-cations 16 2008 pp.135-140.15. B. Lim, S. Hermann, K. Bothe, J. Schmidt, and R. Brendel, “ Solarcells on low-resistivity boron-doped Czochralski-grown silicon withstabilized efficiencies of 20 ” , Applied Physics Letters 93 2008pp.162102.