2008各类太阳能高效电池结构
104 December 2008Advanced crystalline silicon photovoltaicsWim C. SinkeECN Solar Energy Utrecht University4 December 2008 2p-type Si baseback contactfront contactSilicon solar cell b asic operation –generationp -type Sin -type Si emitterdepletion field regionback surface field4 December 2008 3p-type Si baseback contactfront contactp-type Sin-type Si emitterdepletion field regionback surface fieldelectronSilicon solar cell b asic operation –generationhole4 December 2008 4p-type Si baseback contactfront contactp -type Sin -type Si emitterdepletion field regionback surface fieldSilicon solar cell b asic operation –carrier diffusion4 December 2008 5p-type Si baseback contactfront contactp-type Sin-type Si emitterdepletion field regionback surface field-Silicon solar cell b asic operation –carrier separation collection4 December 2008 6p-type Si baseback contactfront contactp-type Sin-type Si emitterdepletion field regionback surface fieldSilicon solar cellbasic operation –power generation24 December 2008 7p-type Si baseback contactfront contactp-type Sin-type Si emitterdepletion field regionback surface fieldSilicon solar cellbasic operation –power generation4 December 2008 8p-type Si baseback contactfront contactp-type Sin-type Si emitterdepletion field regionback surface fieldSilicon solar cell b asic operation –final recombination the circle is closed4 December 2008 9p-type Si baseback contactfront contactp-type Sin-type Si emitterdepletion field regionback surface fieldSilicon solar cell basic operation –parasitic unwanted generation4 December 2008 10Courtesy M.A. Green,UNSWHistory of silicon solar cells1941 – 19544 December 2008 11Courtesy M.A. Green,UNSWHistory of silicon solar cells1960 - 19804 December 2008 12History of silicon solar cells 1980 - 2000Courtesy M.A. Green,UNSW34 December 2008 13University of New South Wales Australiac-Si solar cells efficiency development4 December 2008 14Passivated Emitter and Rear Locally diffusedCell parametersJsc 42.2 mA/cm2Voc 706 mVff 0.828η 24.7 c-Si solar cell PERL structure UNSW, 1999Record c-Si solar cell4 December 2008 15Key attributes for ultra-high efficiency cSi solar cellsSurface texture inverted pyramids for light trappingSelective emitter n -layer for contact, n -layer for active part of surfacePassivation of surface SiO2 on both sides of solar cellNarrow metal fingers on the front side, smaller contact area with emitter Rear side metalisation with small contact area to the base materialLocally diffused regions under contact points at the back BSF fieldMinority diffusion lengths well in excess of device thicknessRecord c-Si solar cell4 December 2008 16Cell design conceptsStandard - Front Emitter FEFront Surface Field FSFH eteroJunction HJM etallisation Wrap Through MWT Emitter W rap Through EWT B ack Junction B ack Contact BJBC Carrier collection at frontCarrier collection at rearFront and rear contactedAll rear contacted4 December 2008 17ARCRear contactFront contactSi substrate BSFEmitterARCRear contactFront contactSi substrate BSFEmitterStandard Front EmitterRecord efficiency large area mcSi 18industrial processUniversity of KonstanzGermany Kyocera Corp., Japan16 for n-type mcSi ECNRecord efficiency small area FZ Si 25laboratory processUniversity of New South Wales, AustraliaBest silicon cell ever4 December 2008 18Front Surface Field Record efficiency large area FZ Si 17.4industrial processECN, NLRecord efficiency small area FZ Si 19laboratory processFraunhofer ISE, GermanyARCRear contactFront contactSi substrate EmitterFSF44 December 2008 19Metallisation Wrap Through MWT Record efficiency large area mcSi 19dedicated process,Kyocera Corp., JapanCourtesy KyoceraSi substrateARCEmitterBSFEmitter contactBase contact4 December 2008 20Metallisation Wrap Through MWT Efficiency large area mcSi 17industrial process ECN and Kyocera Corp., JapanSi substrateARCEmitterBSFEmitter contactBase contactECN MWT cell design “ PUM”ECN’s designof MWT cellMother Nature ’s designof a waterlily leaf4 December 2008 21Emitter Wrap Through EWTRecord efficiency large area mcSi 16industrial processAdvent Solar, USARecord efficiency large area FZ Si 21dedicated processISFH, GermanyCourtesyAdvent SolarARCBase contactSi substrate BSFEmitterEmitter contact4 December 2008 22HeterojunctionSanyo HIT cells 22 efficiencySuitable for bifacial useCourtesy Sanyo4 December 2008 23IBC Interdigitated Back Contact solar cells University of Lafayette, TRW SystemsPCSC Point Contact Solar Cells Stanford University, SunPowerBack-OECO Back-Oblique Evaporation of COntacts ISFHRISE Rear Interdigitated contact scheme, metallized by a Single Evaporation ISFHIBBC Interdigitated Backside Buried Contact solar cells UNSWA-300 SunPower Back Contact, Back Junction different approaches4 December 2008 24IBC The PCSC28 under concentration Back Contact, Back Junction incl. concentrator designsLammert, 1977Verlinden, 1987 Swanson, Sinton King, 1986-198754 December 2008 25UNSW, Guo et Cotter, 2004, 2005, 2006IBBC Back Contact, Back JunctionA-300 cells 23, first 20 total-area efficiency module Courtesy UNSWCourtesy SunPower4 December 2008 26From cell to moduleConventional module technology solderingGlassEVASolar cellsEVATedlar foilSeries connectionInterconnection strips tabs4 December 2008 27From cell to module alternative approachECN’s rear contact technology4 December 2008 28Wafer silicon PV – typical 2005 cost structure and roads to cost reductionWafering11Ingot growth 8Feedstock14Module assembly40Cell processing 27Reduced Si consumption per Wpand use of low-cost SiHigh-throughput processingand high cell efficiencyHigh total-area module efficiency and new manufacturing concepts4 December 2008 29Cost calculations next generation cSi PV subject to updatingcombined effects of technology development and scale00,20,40,60,811,21,41,6Costeuro/WpBasepowerMultistarMultistaRMWTSupersliceSuperslicE EWTRibbon champMWTEpi.CTechnology typeModule assemblyCell processingSilicon related