solarbe文库
首页 solarbe文库 > 资源分类 > PDF文档下载

硅基异质结太阳电池的新途 径与挑战,兼谈土耳其光伏 业及应用发展(土耳其中东科技大学Prof. Rasit Turan )

  • 资源大小:4.14MB        全文页数:46页
  • 资源格式: PDF        下载权限:游客/注册会员/VIP会员    下载费用:5金币 【人民币5元】
游客快捷下载 游客一键下载
会员登录下载
下载资源需要5金币 【人民币5元】

邮箱/手机:
温馨提示:
支付成功后,系统会根据您填写的邮箱或者手机号作为您下次登录的用户名和密码(如填写的是手机,那登陆用户名和密码就是手机号),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦;
支付方式: 微信支付    支付宝   
验证码:   换一换

 
友情提示
2、本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   
4、下载无积分?请看这里!
积分获取规则:
1充值vip,全站共享文档免费下;直达》》
2注册即送10积分;直达》》
3上传文档通过审核获取5积分,用户下载获取积分总额;直达》》
4邀请好友访问随机获取1-3积分;直达》》
5邀请好友注册随机获取3-5积分;直达》》
6每日打卡赠送1-10积分。直达》》

硅基异质结太阳电池的新途 径与挑战,兼谈土耳其光伏 业及应用发展(土耳其中东科技大学Prof. Rasit Turan )

pNEW APPROACHES IN THE SILICON HETEROJUNCTION SOLAR CELLS Middle East Technical University - 2019 Rasit Turan The Center for Solar Energy Research and Applications G NAM, METU, Ankara, Turkey Department of Physics, METU, Ankara, Turkey OUTLINE 1 Introduction Silicon Heterojunction Solar Cell, old and new concepts Research directioons at G NAM Use of carrier selective layers instead of doped a-Si Conclusions Center for Solar Energy Research and Applications G NAM Middle East Technical University METU G NAM Photovoltaic c-Sİ Solar Cell Pilot Production Line GPVL 2 Collaboration with Institute of Photovoltaics of Nanchang University Institute of Photovoltaics of Nanchang University Center for Solar Energy Research and Applications Prof. Lang Zhou, who is the director of Institute of Photovoltaics of Nanchang University China,was hosted by GNAM He delivered a talk titled “Development of solar cells based on heterojunction of amorphous silicon and crystalline silicon HACHIT and post HIT” on 26th November 2018. Conventional Al-BSF c-Si Solar Cell Technology 2 A standard solar cell is composed of a p-n junction on the front side and Al contact on the back side. Al diffusion creates a p-p barrier called back surface field on the back side Disadvantages Low carrier life time due to high recombination rate at Si/Al interface Works only with p-type substrate which suffers from low bulk life time Record efficiency 20.291 ARC/Passivation SiNx/SiOx n-emitter p-Si Al p-BSF Screen-printed Al Ag 1 Ki Hyung Kim, et al, JJAP, vol 56, 2017 Heterojunction Solar Cell 2 In a heterojunction solar cell, p-n juntion is formed externally by n- and p- type a-Si layers An i-a-Si layer provides excellent passivation leading to very high carrier life time values miliseconds Carrier collection takes place through n and p layers Disadvantages Extremely good control on layer thicknesses is needed Surface cleaning is critical High contact resistance Use of extremely toxic gases High cost Record efficiency 25.42 ITO p-a-SiH i-a-SiH n-type cSi wafer n-a-SiH Ag i-a-SiH Ag ITO 2 Masuko K et al., IEEE J Photovoltaics, 461433‐1435 2014 EC EV EF ΔEC1 ΔEV1 ΔEC2 ΔEV2 a-SiH p/i n-type c-Si a-SiH i/n MetalITO Metal ITO Dopant Free Carrier Selective Junctions 2 In principle, doped layers are not needed to seperate and collect e-h pairs generated by a photon Appropriate materials may provide band alignment/band bending to seperate electrons and holes and collect carriers selectively Proposed dopant free passivating carrier selective contacts Metal Flourides LiFx, KFx, MgFx, . Metal Oxides MoOx, TiOx, V2Ox, Promising candidates Hole selective layer MoOx Electron selective TiOx TCO Hole selective layer MoOx Pasivation Crystal Si wafer Electron selective layer TiOx Metal Pasivation Metal TCO Passivation might be needed 7 Best SHJ Solar Cell Efficiencies 0 5 10 15 20 25 30 1995 2000 2005 2010 2015 2020 Effi cien cy Year Panasonic Kaneka Enhanced passivation quality of a-SiH Large area application, Bifacial SHJ solar cell by Sanyo Optimized band alignments and ITO layer a clean c-Si surface before a- SiH deposition; deposition of a high-quality intrinsic a-SiH layer; lower plasma and/or thermal damage to the c-Si surface during a-SiH, TCO, and conductive electrode fabrication. IBC design; Further improvements on passivation Best Cell Efficiencies-SHJ IBC aK. Masuko et al., IEEE Journal of Photovoltaics, 4, 1433 2014 bD. Adachi et al., Applied Physics Letters, 107, 233506 2015 cM. Taguchi et al., IEEE Journal of Photovaoltaics, 4, 96 2014 dhttps//www.helmholtz-berlin.de/media/media/projekte/hercules/hercules-m36-workshop/yoshikawa-kaneka-2016-hercles-designated-version.pdf Voc [V] Jsc [mA/cm2] FF Efficiency Area*[cm2] Cell type aPanasonic 0.740 41.8 82.7 25.6 143.7 da SHJ-IBC dKaneka 0.740 42.5 84.65 26.63 179.74da SHJ-IBC cPanasonic 0.750 39.49 83.2 24.7 101.8 ta SHJ bKaneka 0.738 40.8 83.5 25.1 151.9 ap SHJ HAC Solar Cell Approach Heterojunction of Amorphous silicon and Crystalline silicon with Localized pn structure HACL* * designed and proposed by Prof. Zhou and his colleauges Simulation results obtained by ATLAS** ** Haibin Huang, Lang Zhou, Jire Yuan, Zhijue Quan PECVD Cluster System at GNAM 10 Manufactured by Vaksis Turkish Company ✓3 CCP chambers, 1 ICP chamber and two sputter units CCP intrinsic CCP n-type CCP p-type SPUTTER Ag amp; AZO ICP CLUSTER PECVD SYSTEM SHJ Studies in GNAM 11 Wet Chemical Cleaning Processes RCA-1, RCA-2 and Piranha Deposition of i a-SiH on both sides Passivation layer Deposition of n a-SiH BSF Deposition of p a-SiH Surface Texturing Formation of random pyramids Oxide Removal HF/HCl Metal contact formation on both sides Sputtering of TCO on both sides ITO I-V characterization Different surface morphologies To improve passivation quality -Various deposition conditions -Hydrogen termination -Different passivation layers i aSiCH P type a-SiC window layer Different electron and hole selective layers Reactive sputtering Screen printing and electroplating Formation of inverted pyramids 12 Wet Chemical Cleaning Processes RCA-1, RCA-2 and Piranha Deposition of i a-SiH on both sides Passivation layer Deposition of n a-SiH BSF Deposition of p a-SiH Surface Texturing Formation of random pyramids Oxide Removal HF/HCl Metal contact formation on both sides Sputtering of TCO on both sides ITO I-V characterization Different surface morphologies Lithography free inverted pyramids on p and n type c-Si Inverted Pyramids 13 E. Donercark et al., PVCON2018, Ankara Single Step Lithography-Free Inverted Pyramids with Cu-assisted Etching Cu nanoparticle removal by Nitric acid CuNO32/𝐻𝐹 /𝐻2𝑂2 etchant Etching in 15 minutes {100} planes {110} planes The etch rate difference between 100 and 110 planes results in the formation of star shapes 0 200 400 600 800 0 10 20 30 40 C u r r e n t D e n s i ty m A / c m 2 Vol ta g e m V Exteremely low reflection 2.6 Upright vs. Inverted Pyramid Jsc [mA/cm2] 39.1 Jsc [mA/cm2] upward pyramids 37.7 Higher Jsc values have been obtained in solar cells with inverted pyramids Passivation of i a-SiH layer 14 Wet Chemical Cleaning Processes RCA-1, RCA-2 and Piranha Deposition of i a-SiH on both sides Passivation layer Deposition of n a-SiH BSF Deposition of p a-SiH Surface Texturing Formation of random pyramids Oxide Removal HF/HCl Metal contact formation on both sides Sputtering of TCO on both sides ITO I-V characterization To improve passivation quality -Various deposition conditions -Hydrogen termination -Different passivation layers i aSiCH Impact of SiH4/H2 ratio on lifetime 15 SiH4 /H2 Tau s impliedVocmV 1/2 2300 725 1/3 2500 730 1/4 1600 700 1/5 460 600 1/9 50 550 0.00E00 5.00E-04 1.00E-03 1.50E-03 2.00E-03 1.00E14 2.10E15 4.10E15 Tau s Δn cm-3 1/9ratio 1/6ratio 1/2ratio 1/3ratio Impact of SiH4/H2 ratio on Dit as measured by MOS device 16 SiH4 /H2 Dit nbsp;eV-1cm-2 1/2 2.62x1011 1/3 1.83x1011 1/4 3.94x1011 1/5 5.19x1011 1/9 4.84x1012 Impact of SiH4/H2 ratio 17 SiH4 /H2 Dit nbsp;eV-1cm-2 CH impliedVocmV Tau s 1/2 2.62x1011 7.82 725 2300 1/3 1.83x1011 8.14 730 2500 1/4 3.94x1011 10.28 700 1600 1/5 5.19x1011 11.97 600 460 1/9 4.84x1012 15.34 550 50 H plasma 7.62x1010 9.45 740 4000 After deposition of i-aSiH layer, H plasma treatment enhance passivation quality Dit CH impliedVoc Tau H plasma treatment Electron and hole selective layers 18 Wet Chemical Cleaning Processes RCA-1, RCA-2 and Piranha Deposition of i a-SiH on both sides Passivation layer Deposition of n a-SiH BSF Deposition of p a-SiH Surface Texturing Formation of random pyramids Oxide Removal HF/HCl Metal contact formation on both sides Sputtering of TCO on both sides ITO I-V characterization P type a-SiC window layer Different electron and hole selective layers Electron and Hole Selective Layers 2 TiOx/c-Si interface has a small conduction band offset allowing feasible electron transport from silicon to TiOx and a large valence band offset which blocks the holes transport from silicon to TiOx TiOx as electron selective layer MoOx as hole selective layer P MoOx Ec Ev n-type cSi Ef −− − − Δ - qVbi For an n-type substrate, holes are accummulated at the MoOx/Si interface and forms a hole rich layer there. They can tunnel to the contuction band of MoOx Standard Al BSF Solar cell with MoOx layer on the back side 156x156 mm2 large, 180 m thick p-type CZ solar wafers 1-3 Ω.cm To our knowledge this is the best efficiency reported for a direct heterojunction between MoOx and p-type c-Si without passivation layers and First reported industrial scale p-type c-Si/MoOx solar cell H. Nasser et al., Under Preparation 20 SHJ Solar cell with MoOx instead of p-Si 21 SHJ MoOx Voc mV 650 641 Jsc mA/cm2 39.34 39.51 FF 75.24 73.05 Efficiency 19.85 18.50 EQE Results 22 SHJ with MoOx has significantly higher blue response than standard SHJ due to low absorpiton MoOx can be considered as an alternative to the doping in the HAC approach Electron Selective Passivating TiOx 3 High efficiency solar cells with electron selective TiOx S. Avatsthi et al, App. Physc. Lett. 102 2013 203901 J. Jhaveri, IEEE PVSC Proc. 2015 X. Yang et al., Sol. Energy Mater. Sol. Cells 150 2016 32 X. Yang et al., Adv. Mater. 28 2016 5891 X. Yang et al., Prog. Photovolt. Res. Appl. 2017 J. Bullock et Al., ACS Energy Lett. 3 2018 508 2013 2014 2015 2016 2017 2018 6 8 10 12 14 16 18 20 22 24 Efficiency Year Efficiency N-wafer Front Doped N-wafer PEDOTPSS MOCVDP-wafer single junction CVD Contact resistivity degrades with increasing TiOx thickness Better to deposit TiOx by ALD ALD deposition may also provide good passivation X. Yang et al., Adv. Mater. 28 2016 5891 Electron Selectivity of the TiOx/Si Junction 20 n-type Revealing the electron selectivity of TiOxBoth TiOx and c-Si exhibit n-type conductivity TiOx/n-type c-Si heterojunctions behave like quasi-standard p-n junction diodes When TiOx is deposited on n-type c-Si, only electrons can transport to TiOx contact while holes are repelled away band alignment This is a clear indication of electron selectivity of the junction D. Ahiboz et al., Semicond. Sci. Technol. 33 2018 045013 Passivation Capacity of ALD TiOx Effect of Interlayer 25 ALD at 230 C was chosen lowest Dit, amorphous, no N contamination WCOx Wet Chemical Oxide SiO2 An impressive effective lifetime of 2.3 msec was obtained from 3.5 nm thick TiOx deposied on WCOx followed by forming gas annealing The results proves a promising passsivation ability of TiOx for solar cell aplications 2 2.5 3 3.5 0 500 1000 1500 2000 2500 t eff m S Thickness nm Ti Ox/ c- Si Ti Ox/ c- SiF GA Ti Ox/ WCOx/c- Si Ti Ox/ WCOx/c- SiF GA 2 2.5 3 3.5 0 100 200 300 400 500 600 700 800 iV oc mV Thickness nm Wet chemical oxide SiO2 was produced by nitric acid HNO3 oxidation Electroplating for Metalization 26 Wet Chemical Cleaning Processes RCA-1, RCA-2 and Piranha Deposition of i a-SiH on both sides Passivation layer Deposition of n a-SiH BSF Deposition of p a-SiH Surface Texturing Formation of random pyramids Oxide Removal HF/HCl Metal contact formation on both sides Sputtering of TCO on both sides ITO I-V characterization Screen printing vs. electroplating Electroplating for Metalization 27 The limitations of screen printed contacts Lower fill factors, Higher shading loss Cost the use of expensive Ag pastes nbsp;There is a need for an alternate metallization scheme Solar Cell Results for Electroplating 28 Cell Parameters Ag-Screen Printed Ref. Cell Ni/Cu Plated Cell Cell eff. [] nbsp;amp; Cell eff. [] SunsVoc 17.69 nbsp; amp; nbsp; 18.13 17.32 nbsp; amp; nbsp; 17.82 Voc [mV] nbsp; amp; Voc [mV] SunsVoc 621 nbsp; nbsp; amp; nbsp; 622 609 nbsp; nbsp;amp; nbsp; 610 F.F. [] nbsp; nbsp; amp; nbsp;pF.F [] nbsp;SunsVoc 77.06 nbsp; amp; nbsp; 81.84 76.00 nbsp; amp; nbsp; 78,64 Jsc [mA/cm2] 36.54 36.40 Series resistance Rs [Ω-cm2] 0.199 0.333 Metal contact width [m] 90 40 ρc [mΩcm2] 5,471,3 3,170,35 Summary and Conclusions 25 SHJ solar cells are the best performing crystalline solar cells Gas ratio, passivating layers should be carefully optimized Alternative materials for p- and n-type amorphous layer can lower the cost. MoOx and TiOx are good candidates for hole and electron selective layers for dopant free solar cells. 17.6 2 2.5 3 3.5 0 500 1000 1500 2000 2500 t eff m S Thickness nm Ti Ox/ c- Si Ti Ox/ c- SiF GA Ti Ox/ WCOx/c- Si Ti Ox/ WCOx/c- SiF GA/p

注意事项

本文(硅基异质结太阳电池的新途 径与挑战,兼谈土耳其光伏 业及应用发展(土耳其中东科技大学Prof. Rasit Turan ))为本站会员(光伏小萝莉)主动上传,solarbe文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知solarbe文库(发送邮件至794246679@qq.com或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2008-2013 solarbe文库网站版权所有
经营许可证编号:京ICP备10028102号-1

1
收起
展开