solarbe文库
首页 solarbe文库 > 资源分类 > PDF文档下载

Solar cell efficiency tables (version 48)-马丁格林-新南威尔士大学.pdf

  • 资源大小:1.23MB        全文页数:9页
  • 资源格式: PDF        下载权限:游客/注册会员/VIP会员    下载费用:3金币 【人民币3元】
游客快捷下载 游客一键下载
会员登录下载
下载资源需要3金币 【人民币3元】

邮箱/手机:
温馨提示:
支付成功后,系统会根据您填写的邮箱或者手机号作为您下次登录的用户名和密码(如填写的是手机,那登陆用户名和密码就是手机号),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦;
支付方式: 微信支付    支付宝   
验证码:   换一换

 
友情提示
2、本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   
4、下载无积分?请看这里!
积分获取规则:
1充值vip,全站共享文档免费下;直达》》
2注册即送10积分;直达》》
3上传文档通过审核获取5积分,用户下载获取积分总额;直达》》
4邀请好友访问随机获取1-3积分;直达》》
5邀请好友注册随机获取3-5积分;直达》》
6每日打卡赠送1-10积分。直达》》

Solar cell efficiency tables (version 48)-马丁格林-新南威尔士大学.pdf

ACCELERATED PUBLICATION Solar cell efficiency tables version 48 Martin A. Green 1 * , Keith Emery 2 , Yoshihiro Hishikawa 3 , Wilhelm Warta 4 and Ewan D. Dunlop 5 1 Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney, New South Wales 2052, Australia 2 National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA 3 Research Center for Photovoltaics RCPV, National Institute of Advanced Industrial Science and Technology AIST, Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan 4 Characterisation and Simulation/CalLab Cells, Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, D-79110 Freiburg, Germany 5 European Commission – Joint Research Centre, Renewable Energy Unit, Institute for Energy, Via E. Fermi 2749, IT-21027 Ispra, VA, Italy ABSTRACT Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2016 are reviewed. Copyright 2016 John Wiley photovoltaic efficiency; energy conversion efficiency *Correspondence Martin A. Green, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052 New South Wales, Australia. E-mail m.greenunsw.edu.au Received 10 May 2016; Accepted 20 May 2016 1. INTRODUCTION Since January 1993, Progress in Photovoltaics has pub- lished six monthly listings of the highest confirmed efficiencies for a range of photovoltaic cell and module technologies [1–3]. By providing guidelines for inclusion of results into these tables, this not only provides an authoritative summary of the current state-of-the-art but also encourages researchers to seek independent confirma- tion of results and to report results on a standardised basis. In Version 33 of these Tables [2], results were updated to the new internationally accepted reference spectrum International Electrotechnical Commission IEC 60904-3, Ed. 2, 2008, where this was possible. The most important criterion for inclusion of results into the Tables is that they must have been independently mea- sured by a recognised test centre listed elsewhere [1]. A distinction is made between three different eligible defini- tions of cell area total area, aperture area and designated illumination area, as also defined elsewhere [1]. ‘Active area’ efficiencies are not included. There are also certain minimum values of the area sought for the different device types above 0.05cm 2 for a concentrator cell, 1cm 2 for a one-sun cell and 800cm 2 for a module. Results are reported for cells, and modules made from different semiconductors and for sub-categories within each semiconductor grouping e.g. crystalline, polycrystal- line and thin film. From Version 36 onwards, spectral response information is included when available in the form of a plot of the external quantum efficiency EQE versus wavelength, either as absolute values or normalised to the peak measured value. Current voltage IV curves have also been included where possible from Version 38 onwards. 2. NEW RESULTS Highest confirmed ‘one sun’ cell and module results are reported in Tables I and II. Any changes in the tables from those previously published [3] are set in bold type. In most cases, a literature reference is provided, which describes either the result reported, or a similar result readers identi- fying improved references are welcome to submit to the lead author. Table I summarises the best reported measurements for cells and submodules, while Table II shows the best results for modules. Table III contains what might be described as ‘notable exceptions’. While not PROGRESS IN PHOTOVOLTAICS RESEARCH AND APPLICATIONS Prog. Photovolt Res. Appl. 2016; 24905–913 Published online in Wiley Online Library wileyonlinelibrary.com. DOI 10.1002/pip.2788 Copyright 2016 John Wiley 4 729–733. 10. Essig S, Steiner MA, Alleb’e C, Geisz JF, Paviet-Sal- omon B, Ward S, Descoeudres A, LaSalvia V, Barraud L, Badel N, Faes A, Levrat J, Despeisse M, Ballif C, Stradins P, Young DL. Realization of GaInP/Si dual- junction solar cells with 29.8 1-sun efficiency. IEEE Journal of Photovoltaics to be published DOI 10.1109/JPHOTOV.2016.2549746. 11. Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S. Achievement of more than 25 con- version efficiency with crystalline silicon heterojunction solar cell. IEEE Journal of Photovol- taics 2014; 4 1433–1435. 12. Scherff MLD, Kowalzik P, Gerber C, Duncker K, Junghnel M, Fahrland C, Klter B, Mller JW. P-type multicrystalline silicon solar cell module with 19.5 efficiency on aperture area. 6th International Confer- ence on Silicon Photovoltaics, SiliconPV 2016 to be published in Energy Procedia, 2016. 13. Takamoto T. Application of InGaP/GaAs/InGaAs tri- ple junction solar cells to space use and concentrator photovoltaic. 40 th IEEE Photovoltaic Specialists Con- ference, Denver, June 2014. 14. Solar Frontier Press Release. Solar frontier achieves world record thin-film solar cell efficiency 22.3, 8 December 2015. 15. FirstSolarPressRelease.Firstsolarachievesyetanother cellconversionefficiencyworldrecord,24February2016. 16. Program milestones and decision points for single junction thin films. Annual Progress Report 1984, Photovoltaics, Solar Energy Research Institute, Report DOE/CE-0128, June 1985; 7. 17. Sakata I, Tanaka Y, Koizawa K. Japan’s new national R 1–4. 18. Jger-Waldau A Ed.. PVNET European Roadmap for PV R 3; 8139–8147. 20. Green MA, Keevers MJ, Thomas I, Lasich JB, Emery K, King RR. 40 efficient sunlight to electric- ity conversion. Progress in Photovoltaics Research and Applications 2015; 236 685–691. 21. Zhang S, Pan X, Jiao H, Deng W, Xu J, Chen Y, Altermatt PP, Feng Z, Verlinden PJ. 335 watt world re- cord p-type mono-crystalline module with 20.6 effi- cient PERC solar cells. IEEE Journal of Photovoltaics 2016; 6 145–152. Solar cell efficiency tables version 48M. A. Green et al. 911Prog. Photovolt Res. Appl. 2016; 24905–913 2016 John Wiley 31–36. 26. Keavney CJ, Haven VE, Vernon SM. Emitter struc- tures in MOCVD InP solar cells. Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May, 1990; 141–144. 27. Solibro Press Release. “Solibro beats world record for solar cells”, dated 12 June 2014. 28. Wallin E, Malm U, Jarmar T, Lundberg O, Edoff M, Stolt L. World-record CuIn,GaSe 2 -based thin-film sub-module with 17.4 efficiency. Progress in Pho- tovoltaics Research and Applications 2012; 20 851–854. 29. First Solar Press Release. First solar builds the highest efficiency thin film PV cell on record, 5 August 2014. 30. Matsui T, Sai H, Suezaki T, Matsumoto M, Saito K, Yoshida I, Kondo M. Development of highly stable and efficient amorphous silicon based solar cells. Proc. 28th European Photovoltaic Solar Energy Conference, 2013; 2213–2217. 31. Sai H, Maejima K, Matsui T, Koida T, Kondo M, Nakao S, Takeuchi Y, Katayama H, Yoshida I. High- efficiency microcrystalline silicon solar cells on hon- eycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition. Japanese Journal of Applied Physics, 2015; 54; 08KB05 1–6. 32. Komiya R, Fukui A, Murofushi N, Koide N, Yamanaka R Katayama H. Improvement of the con- version efficiency of a monolithic type dye-sensitized solar cell module. Technical Digest, 21st International Photovoltaic Science and Engineering Conference, Fukuoka, November 2011; 2C-5O-08. 33. Kawai M. High-durability dye improves efficiency of dye-sensitized solar cells. Nikkei Electronics, 2013; Feb. 1. http//techon.nikkeibp.co.jp/english/NEWS_EN /20130131/263532/ [accessed 23 October, 2013] 34. Hosoya M, Oooka H, Nakao H, Gotanda T, Mori S, Shida N, Hayase R, Nakano Y, Saito M. Organic thin film photovoltaic modules. Proceedings of the 93rd Annual Meeting of the Chemical Society of Japan, 2013; 21–37. 35. Chiu PT, Law DL, Woo RL, Singer S, Bhusari D, Hong WD, Zakaria A, Boisvert JC, Mesropian S, King RR, Karam NH. 35.8 space and 38.8 terrestrial 5J direct bonded cells. Proc. 40th IEEE Photovoltaic Specialist Conference, Denver, June 2014; 11–13. 36. Sasaki K, Agui T, Nakaido K, Takahashi N, Onitsuka R, Takamoto T. Proceedings, 9th International Con- ference on Concentrating Photovoltaics Systems, Miyazaki, Japan 2013. 37. Sai H, Matsui T, Koida T, Matsubara K, Kondo M, Sugiyama S, Katayama H, Takeuchi Y, Yoshida I. Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized effi- ciency of 13.6. Applied Physics Letters 2015; 106 213902 DOI10.1063/1.4921794. 38. Mattos LS, Scully SR, Syfu M, Olson E, Yang L, Ling C, Kayes BM, He G. New module efficiency record 23.5 under 1-sun illumination using thin-film single-junction GaAs solar cells. Proceedings of the 38th IEEE Photovoltaic Specialists Conference, 2012. 39. First Solar Press Release. First solar achieves world record 18.6 thin film module conversion efficiency, 15 June 2015. 40. Sugimoto H. High efficiency and large volume pro- duction of CIS-based modules. 40 th IEEE Photovoltaic Specialists Conference, Denver, June 2014. 41. http//www.miasole.com accessed 22 May, 2015. 42. TEL solar press release, July 9, 2014. 43. Zhao J, Wang A, Green MA, Ferrazza F. Novel 19.8 efficient “honeycomb” textured multicrystalline and 24.4 monocrystalline silicon solar cells. Applied Physics Letters 1998; 73 1991–1993. 44. Yamamoto K, 25.1 efficiency Cu metallized heterojunction crystalline Si solar cell. 25th Interna- tional Photovoltaic Science and Engineering Confer- ence, Busan, Korea, November 2015. 45. Werner T, Analyst Day, 12 November, 2015, Slide 24. 46. Geisz JF, Steiner MA, Garcia I, Kurtz SR, Friedman DJ. Enhanced external radiative efficiency for 20.8 efficient single-junction GaInP solar cells. Applied Physics Letters 2013; 1034, 041118. 47. Nakamura M, Yamaguchi K, Chiba Y, Hakuma H, KobayashiT,NakadaT.Achievementof19.7efficiency with a small-sized CuInGaSeS 2 solar cells prepared Solar cell efficiency tables version 48 M. A. Green et al. 912 Prog. Photovolt Res. Appl. 2016; 24905–913 2016 John Wiley 105 093901 DOI10.1063/1.4894858. 50. Service R. Outlook brightens for plastic solar cells. Science 2011; 332 293. 51. Slade A, Garboushian V. 27.6 efficient silicon con- centrator cell for mass production. Technical Digest, 15th International Photovoltaic Science and Engineer- ing Conference, Shanghai, October 2005; 701. 52. Ward JS, Ramanathan K, Hasoon FS, Coutts TJ, Keane J, Contreras MA, Moriarty T, Noufi R. A 21.5 efficient CuIn, Ga Se2 thin-film concentrator solar cell. Progress in Photovoltaics Research and Applications 2002; 1041–46. 53. Press release, Fraunhofer Institute for Solar Energy Systems, 1 December 2014 accessed at. http//www. ise.fraunhofer.de/en/press-and-media/press-releases/ press-releases-2014/new-world-record-for-solar-cell- efficiency-at-46-percent on 7 December 2014. 54. NREL Press Release NR-4514, 16 December 2014. 55. Press Release, Sharp Corporation, 31 May 2012 accessed at http//sharp-world.com/corporate/news/ 120531.html on 5 June 2013. 56. Steiner M, Siefer G, Schmidt T, Wiesenfarth M, Dimroth F, Bett AW. 43 sun light to electricity con- version efficiency using CPV. IEEE Journal of Photo- voltaics, DOI 10.1109/JPHOTOV.2016.2551460. 57. Chiang CJ and Richards EH. A 20 efficient photo- voltaic concentrator module. Conf. Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990 861–863. 58. http//amonix.com/pressreleases/amonix-achieves-world- record-359-module-efficiency-rating-nrel-4 accessed 23 October 2013. 59. van Riesen S, Neubauer M, Boos A, Rico MM, Gourdel C, Wanka S, Krause R, Guernard P, Gombert A. New module design with 4-junction solar cells forhighefficiencies. Proceedings of the 11th Con- ference on Concentrator Photovoltaic Systems, 2015. 60. Zhang F, Wenham SR, Green MA. Large area, con- centrator buried contact solar cells. IEEE Transactions on Electron Devices 1995; 42 144–149. 61. Slooff LH, Bende EE, Burgers AR, Budel T, Pravettoni M, Kenny RP, Dunlop ED, Buechtemann A. A lumines- cent solar concentrator with 7.1 power conversion effi- ciency. Physica Status Solidi RRL 2008; 26 257–259. 62. Krašovec UO, Bokalič M, Topič M. Ageing of DSSC studied by electroluminescence and transmission imaging. Solar Energy Materials and Solar Cells 2013; 11767–72. 63. Tanenbaum DM, Hermenau M, Voroshazi E, Lloyd MT, Galagan Y, Zimmermann B, Hoesel M, Dam HF, Jrgensen M, Gevorgyan SA, Kudret S, Maes W, Lutsen L, Vanderzande D, Wuerfel U, Andriessen R, Roesch R, Hopper H, Teran-Escobar G, Lira-Cantu M, Rivaton A, Uzunoğlu GY, Germack D, Andreasen B, Madsen MV, Norrmany K, Krebs FC. The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices. RSC Advances 2012; 2 882–893. 64. a Krebs FC. Stability and Degradation of Organic and Polymer Solar Cells. Wiley Chichester, 2012; b Jorgensen M, Norrman K, Gevorgyan SA, Tromholt T, Andreasen B, Krebs FC. Stability of polymer solar cells. Advanced Materials 2012; 24 580–612. 65. Gueymard CA, Myers D, Emery K. Proposed refer- ence irradiance spectra for solar energy systems test- ing. Solar Energy 2002; 73 443–467. Solar cell efficiency tables version 48M. A. Green et al. 913Prog. Photovolt Res. Appl. 2016; 24905–913 2016 John Wiley Sons, Ltd. DOI 10.1002/pip

注意事项

本文(Solar cell efficiency tables (version 48)-马丁格林-新南威尔士大学.pdf)为本站会员(灰色旋律)主动上传,solarbe文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知solarbe文库(发送邮件至794246679@qq.com或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2008-2013 solarbe文库网站版权所有
经营许可证编号:京ICP备10028102号-1

1
收起
展开