solarbe文库
首页 solarbe文库 > 资源分类 > PDF文档下载

EffectofhydrogenplasmapassivationonperformanceofHITsolarcells

  • 资源大小:254.38KB        全文页数:3页
  • 资源格式: PDF        下载权限:游客/注册会员/VIP会员    下载费用:3金币 【人民币3元】
游客快捷下载 游客一键下载
会员登录下载
下载资源需要3金币 【人民币3元】

邮箱/手机:
温馨提示:
支付成功后,系统会根据您填写的邮箱或者手机号作为您下次登录的用户名和密码(如填写的是手机,那登陆用户名和密码就是手机号),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦;
支付方式: 微信支付    支付宝   
验证码:   换一换

 
友情提示
2、本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   
4、下载无积分?请看这里!
积分获取规则:
1充值vip,全站共享文档免费下;直达》》
2注册即送10积分;直达》》
3上传文档通过审核获取5积分,用户下载获取积分总额;直达》》
4邀请好友访问随机获取1-3积分;直达》》
5邀请好友注册随机获取3-5积分;直达》》
6每日打卡赠送1-10积分。直达》》

EffectofhydrogenplasmapassivationonperformanceofHITsolarcells

Effect of hydrogen plasma passivation on performance of HIT solar cellsSeung Jik Lee a, Se Hwan Kim a, Dae Won Kim b , Ki Hyung Kim b , Beom Kyu Kim b, Jin Jang a, na Deptartment of Information Display, Kyung Hee University, Seoul, Republic of Koreab PV Technology Team, Hyosung Co. Ltd., Seoul, Republic of Koreaa r t i c l e i n f oArticle historyReceived 5 November 2009Received in revised form16 February 2010Accepted 4 May 2010Available online 26 May 2010KeywordsSilicon heterojunction SHJSurface passivationHydrogen pretreatmenta b s t r a c tWe studied the performance improvement of HIT solar cells by optimizing H 2 plasma exposure anddeposition of thin a-SH layer on c-Si. With increasing H 2 treatment time, the V OC increases until 80 sand then decreases, indicating the optimum time is 80 s. It is found that the cell performance is almostthe same with and without a thin a-SiH layer when 80 s plasma is treated on the c-Si before i-layerdeposition. The conversion efciency of 14.04 was achieved at the substrate temperature of 160 1C.H layer thickness [10] . In thispaper, we report on the silicon heterojunction solar cells based onn-type Si, using the PECVD technique for the entire emitterdeposition process. We have studied the effect of H 2 plasmatreatment before the deposition of a-SiH layer on the c-Si andcompared the performances with and without H 2 plasmatreatment.2. ExperimentalThe heterojunction solar cells were prepared by depositingp-type a-SiH onto n-type c-Si CZ, 0.5 –6 O cm, 100, 200 mm.The cleaning procedure of the c-Si prior to deposition was theimmersion of the samples in a H 2 SO4H 2 O2 41 solution for10 min, followed by rinsing in a de-ionized water overow rinsebath r 18 M O cm. Subsequently, the samples were immersedin either diluted HF 2 or pure NH 4 F, yielding hydrophobicsurface.After this treatment the Si was immediately placed in thechamber and was pumped down. Passivation of c-Si surface wasprocessed in a PECVD chamber using a pretreatment of atomichydrogen. The exposure to atomic hydrogen before i-layerContents lists available at ScienceDirectjournal homepage www.elsevier.com/locate/solmatSolar Energy Materials fax 82 2 961 9154.E-mail address jjangkhu.ac.kr J. Jang.Solar Energy Materials Solar Cells 95 2011 81– 83deposition helps to clean the wafer surface, remove residualoxide, and passivate surface defects.Intrinsic a-SiH layers with the thickness of 3–5 nm weredeposited using a SiH 4 and H 2 mixture at the substratetemperature of 160 1C in a conventional PECVD chamber. Thepa-SiH with the thickness of 8 nm was deposited by PECVD at asubstrate temperature of 160 1C using a mixture of 1.5 B2 H6 and98.5 SiH 4 . On the other side of the c-Si, intrinsic and na-SiHlayers were deposited to obtain a back surface eld BSFstructure. Transparent conducting oxide TCO layers are formedand nally, front and back contact metal electrodes were formedusing a dispenser or dc sputtering method.Fig. 1 shows the silicon heterojunction solar cell structure of afront electrode/TCO/p-a-SiH/buffer layer/n c-Si/buffer layer/n-a-SiH/TCO/back electrode, where a very thin buffer layer wasintrinsic a-SiH, which was deposited after the hydrogen plasmatreatment on the c-Si.3. Results and discussionsFig. 2 shows the VOC of the HIT cell with and without 4 nma-SiH layer plotted as a function of hydrogen plasma treatmenttime. It increases with H 2 treatment time until 80 s and thendecreases, indicating an optimum time of 80 s. This trend is thesame for the cells with and without intrinsic a-SiH layer.Passivation of c-Si can be improved with the deposition of theintrinsic a-SiH when the H 2 exposure time is less than 80 s, butthere is almost no effect of intrinsic layer when the exposure timeis 80 s. The excess treatment appears to generate the defects onthe Si wafer and increase surface roughness. It is due to theetching of the Si by H radicals, which is sensitive to the surfaceconditions. Exposure of H atoms can passivate the surface andalso etch the Si surface. It is found that the VOC of the HIT cellwithout a-SiH layer can be the same as the one with intrinsic i-layer. The Si surface can be passivated with H atoms by using aproper exposure time, which is due to the reduction ofrecombination-generation centers at the interface.Fig. 3 shows the plot of JSC as a function of Voc for the HIT cellsmade with and without H passivation. Without hydrogen plasmatreatment, a thin intrinsic a-SiHi-layer is critical to obtain goodcell performance. The intrinsic a-SiH buffer layer shows excellentpassivating property, which is due to the reduction of carriersrecombination at the interface [11] .On the other hand, we found that there is no obviousadvantage of using the intrinsic a-SiH layer in cells that aresubjected to hydrogen plasma treatment. Since hydrogen atomcan passivate Si surface defects, there is little effect of adding athin intrinsic a-SiH layer.Fig. 4 shows the current density versus voltage characteristics forthe a-Si/n c-Si SHJ solar cells with an 8-nm-thick p layer and 80 shydrogen plasma treatment, exhibiting 0.71 of FF, 34.4 mA/cm 2 ofshort-circuit current density and 0.575 V of open-circuit voltage andthus 14.04 of conversion efciency.4. ConclusionWe have studied the effects of H 2 plasma on c-Si anddeposition of a thin intrinsic a-SiH layer on c-Si for the HIT solarcells. The conversion efciency can be enhanced by the depositionof a very thin a-SiH on c-Si and also by the exposure of H2 plasmaFig. 1. Structure of a-SiH/c-Si heterojunction solar cells a with front intrinsicthin lm layer and b without front intrinsic thin lm layer.Fig. 2. Open-circuit voltage plotted as a function of hydrogen plasma treatment time.Fig. 3. The short-circuit current density as a function of VOC for the HIT solar cellswith/without hydrogen plasma treatment and intrinsic a-SiH layer.S. Jik Lee et al. / Solar Energy Materials Solar Cells 95 2011 81– 8382on the c-Si. With an 80 s atomic hydrogen plasma treatment theconversion efciency is almost the same with and without anintrinsic a-SiH layer on the n-type c-Si. However, the prolongedhydrogen plasma treatment 4 100 s reduced VOC . These resultsshow that good junction properties are obtained with a devicequality a-SiH buffer layer or by proper hydrogen passsivation onc-Si surface. We achieved the conversion efciency of 14.04 for aHIT cell with an 8 nm p-type a-SiH emitter or by 80 s hydrogenplasma treatment on the c-Si.AcknowledgementThis work was supported in part by Korea Science andEngineering Foundation through the Nano Technology Develop-ment Program Grant no. 2007-02775.References[1] A. Froitzheim, K. Brendel, L. Elstner, W. Fuhs, K. Kliefoth, M. Schmidt, Interfacerecombination in heterojunctions of amorphous and crystalline silicon,J. Non-Cryst. Solids 299– 302 2002 663– 667.[2] Q. Zhang, M. Zhu, F. Liu, Y. Zhou, The optimization of interfacial properties ofnc-SiH/c-Si solar cells in hot-wire chemical vapor deposition process,J. Mater. Sci. Mater. Electron. 18 2007 S33– S36.[3] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. KannoH. Sakata, E. Maruyama, M. Tanaka, Twenty-two percent efciency HIT solarcell, Sol. Energy Mater. Sol. Cells 93 2009 670– 673.[4] H. Angermann, W. Henrion, A. Roseler, M. Rebien, Wet-chemical passivationof Si1 1 1- and Si1 0 0-substrates, Mater. Sci. Eng. B73 2000 178– 183.[5] A.G. Aberle, Surface passivation of crystalline silicon solar cells A Review,Prog. Photovolt. Res. Appl. 8 2000 473– 487.[6] Z. Chen, S.K. Pang, K. Yasutake, A. Rohatgi, Plasma-enhanced chemical-vapor-deposited oxide for low surface recombination velocity and high effectivelifetime in silicon, J. Appl. Phys. 74 1993 2856– 2860.[7] M. Taguchi, H. Sakata, Y. Yoshimine, E. Maruyama, A. Terakawa, M. Tanaka,An approach for the higher efciency in the HIT cells, in Proceedings of the31st IEEE Photovoltaic Specialists Conference, FL, 2005, pp. 866– 871.[8] I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas, R. Alcubilla, Surfacepassivation of p-type crystalline Si by plasma enhanced chemical vapordeposited amorphous SiCxH lms, Appl. Phys. Lett. 79 2001 2199– 2201.[9] S. Dauwe, J. Schmidt, R. Hezel, Very low surface recombination velocities onp- and n-type silicon wafers passivated with hydrogenated amorphoussilicon lms, in Proceedings of the 29th IEEE Photovoltaic SpecialistsConference, New Orleans, 2002, pp. 1246– 1249.[10] L. Korte, E. Conrad, H. Angermann, R. Stangl, M. Schmidt, Advances in a-SiH/c-Si heterojunction solar cell fabrication and characterization, Sol. EnergyMater. Sol. Cells 93 2009 905– 910.[11] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. NakanoH. Hanafusa, Y. Kuwano, Development of new a-Si/c-Si heterojunction solarcells ACJ-HIT articially constructed junction – heterojunction with intrinsicthin-layer, Jpn. J. Appl. Phys. 31 1992 3518– 3522.Fig. 4. Current density vs voltage characteristics for the HIT solar cells underillumination for one of the cells treated with hydrogen plasma. The p-type emitterthickness was 8 nm.S. Jik Lee et al. / Solar Energy Materials Solar Cells 95 2011 81– 83 83

注意事项

本文(EffectofhydrogenplasmapassivationonperformanceofHITsolarcells)为本站会员(情深不寿 ゞ)主动上传,solarbe文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知solarbe文库(发送邮件至794246679@qq.com或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2008-2013 solarbe文库网站版权所有
经营许可证编号:京ICP备10028102号-1

1
收起
展开