课程设计-太阳能路灯系统设计方案
课 程 设 计课程名称: 太阳能光伏发电技术班 级: 10 级光伏发电一班专 业: 光伏发电技术及应用学 号: 1003030116 姓 名: 李 约指导教师: 李 玲提交日期: 年 月 日课程设计成绩:摘要太阳能是地球上最直接最普遍也是最清洁的能源,太阳能作为一种巨量可再生能源。 随着地球资源的日益贫乏, 基础能源的投资成本日益攀高,各种安全和污染隐患可谓无处不在,随着科技的日益先进,太阳能的应用将会越来越广泛,尤其太阳能发电领域在短短的数年时间内已发展成为成熟的朝阳产业。同时,随着技术的成熟和成本的下降,全球 LED 市场近年来保持快速增长的态势, LED 将逐步进入家庭、 办公室等通用照明领域,这将成为未来推动。 太阳能路灯、 庭院灯、 草坪灯等方面的应用应运而生,并已经逐渐形成一定的规模,其具有极其广阔的发展前景和深远意义 ! 目前, 道路照明占整个照明用电量的 25%~30%,因此道路照明节能具有很大的潜力和空间。而目前道路照明使用最多的是传统高压纳灯,就需要在繁华的街道上架线,不仅破坏了环境而且对有色金属的消耗也非常的大,在消耗电能的同时其实是对化石原料的消耗,如此同时还产生了大量的二氧化碳和硫的化合物等有害物质,造成了地球的温室效应,而硫的化合物却带来了酸雨。这种光源存在显色性差、启动时间长、耗电量高、发热量大,污染大等缺点促使更节能更环保新的产品的新道路照明光源产品—— LED 太阳能路灯系统诞生了。太阳能 LED路灯系统是指由太阳能电池发电,通过微电脑芯片的控制器对电能的管理。控制蓄电池充电和放电点亮 LED灯,它是一个自给自足的系统,白天利用太阳能电池板吸收太阳能发电把电能储存在铅酸蓄电池中,到了晚上就由铅酸蓄电池供电给 LED 路灯供电。关键词:节能 环保 LED 光伏系统 太阳能路灯1 目录摘要 2 目录 1 前言 3 第一章 绪论 5 1.1 新余市地理情况及基本气象 5 1.2 LED 太阳能路灯系统的组成及功能 . 5 1.3 太阳能路灯照明系统工作原理介绍 6 1.4 设计思路及其设计原则 6 1.5 新余市 led 路灯设计要求 7 第二章 LED 路灯系统设备介绍 7 2.1 灯杆 . 7 2.2. LED 路灯的定义 7 2.2.1 LED 的结构及发光原理 . 8 2.2.2 LED 路灯的特点与应用优势 . 9 2.2.3 新余市某道路道路照明灯具的具体要求主要有以下几个指标: . 10 2.3 太阳能电池板 11 2.3.1 硅太阳电池的工作原理与结构 11 2.3.2 太阳能电池的基本特性 14 2.3.3 太阳能电池板组件构成 . 14 2.4 蓄电池 . 15 2.4.1 铅酸蓄电池的结构 15 2.5 太阳能控制器 . 17 2.5.1 控制器的基本工作原理 . 17 2.5.2 蓄电池充电 18 2.5.3 蓄电池给 LED 供电 . 18 第三章 新余市 LED太阳能路灯系统的设计 . 19 3.1 灯杆的高度以及挑臂长度的确定 19 3.1.1 路面宽度及有效宽度 . 19 3.1.2 路灯间距 . 20 3.1.3 安装高度的确定 . 20 3.2 LED 功率的确定 . 20 3.2.1、 “利用系数” U 20 3.2.2 维 护 系 数 21 3.2.3 路面平均照度要求 . 21 3.2.4 新余某道路的 led 路灯功率的计算 22 3.3 最佳倾角和方位角的设计 23 3.4 LED 路灯系统蓄电池数量的设计 23 第四章 LED 太能能路灯系统设备选型 26 4.1 灯具的选择 26 4.1.1 led 灯具的选择 . 26 2 4.1.2 优倍照明 LED 路灯灯参数: . 26 4.2 灯杆的选择 27 4.2.1 选择灯杆遵循的基本的原则 . 27 4.2.2 灯杆选择应考虑的内容 . 27 4.2.3 灯杆的相关参数 . 27 4.3 太阳能电池组件的选择 . 28 4.3.1 太阳能电池板的选择 . 28 4.3.2 太阳电池组件的基本要求 . 29 4.3.3 单晶硅太阳能电池组件技术参数 . 29 4.4 蓄电池的选型 30 4.4.1 购买免维护铅酸蓄电池注意事项 . 30 4.4.2 阀控式密封免维护铅酸蓄电池技术参数 . 31 4.5 控制器的选型 32 4.5.1 太阳能路灯控制器的选择应该注意 32 4.5.2 控制器的相关参数 32 第五章 led 路灯系统的预算及分析 . 33 5.1 LED 路灯(单个)系统总费用的估算 33 5.2 LED 路灯与传统路灯综合成本对比表 33 LED 路灯与传统路灯技术参数对比表 34 5.3 新余市太阳能 LED 路灯的性价比分析 . 35 参考文献 36 心得体会 37 3 前言自“六五”计划以来的 20 多年。太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展,成为世界快速、稳定发展的新兴产业之一。传统的燃料能源正在一天天减少,对环境造成的危害日益突出,同时全球还有 20 亿人得不到正常的能源供应。这个时候,全世界都把目光投向了可再生能源,希望可再生能源能够改变人类的能源结构,维持长远的可持续发展。这之中太阳能以其独有的优势而成为人们重视的焦点。丰富的太阳辐射能是重要的能源,是取之不尽、用之不竭的、无污染、廉价、人类能够自由利用的能源。太阳能每秒钟到达地面的能量高达 80 万千瓦,假如把地球表面 0.1%的太阳能转为电能, 转变率 5%, 每年发电量可达 5.63 1012 千瓦小时,相当于目前世界上能耗的 40 倍。太阳能 LED路灯本身的特性——光的单向性,没有光的漫射,保证光照效率; 有独特的二次光学设计, 将 LED路灯的光照射到所需照明的区域,进一步提高了光照效率,以达到节能目的;光源效率目前已达 100lm/W,而且还有很大的发展空间,理论值达 250lm/W。而高压钠灯的发光效率是随功率增加才有所增加,因此,总体光效 LED路灯比高压钠灯强;太阳能LED路灯的光显色性比高压钠灯高许多,高压钠灯显色指数只有 23 左右,而 LED路灯显色指数达到 75 以上, 从视觉心理 角度考虑, 达到同等亮度,LED路灯的光照度平均可以比高压钠灯降低 30%以上, (参照英国道理照明标准) ;太阳能 LED路灯的光衰小, 一年的光衰不到 3%, 使用 10 年仍达到道路使用照度要求,而高压钠灯光衰大,一年左右已经下降 30%以上,因此,LED 路灯在使用功率的设计上可以比高压钠灯低;有自动控制节能装置 ,能实现在满足不同时段照明要求情况下最大可能的降低功率,节省电能; 是低压器件,驱动单颗 LED的电压为安全电压,系列产品单颗 LED功率都为 1 瓦,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所(例如:路灯照明、厂矿照明、汽车照明、民用照明等) ;所以,作为 21 世纪最有潜力的能源,太阳能产业的发展潜力巨大。太阳能产业是新兴的朝阳行业, 再加上良好的政策环境、 行业本身的特性,使得太阳能电池产业具有较高的投资价值和发展潜力。目前,太阳能电池及其相关产业成长性好,是非常好的投资机会,但要注意控制客观存在的经营风险,竞争风险等以取得良好的投资收益。4 系统的基本工作原理:在太阳能控制器的控制下,白天太阳能电池板经过两路升压电路 (12V 到 42V)向蓄电池组充电, 晚上蓄电池组提供电力给 LED 灯负载。在控制模块中,实现了对升压电路、蓄电池电压、温度、LED 灯组温度、电池板电压的实时控制,并通过模拟开关采集数据反馈到PIC 实现对路灯系统的智能化控制。而 Zigbee 模块为路灯系统的组网提供了可靠的技术保障。本文对 LED 太阳能路灯系统的设计首先了解了新余地区的地理及基本气象, 在考虑到新余地区的地理及气象对 LED灯的功率做了 70W的选择,考虑到阴雨天气的长度对铅酸蓄电池做了 200AH(由 2 个 100AH的铅酸蓄电池并联)的选择。对太阳能电池组件做了 165W(由 3 块 55W的电池板并联)的选择,为了让太阳能电池的利用率最优化对电池板的角度做了 40度的要求。最后从经济方面和环保方面对 LED太阳能路灯系统和高压钠灯路灯系统做了一个比较,发现 LED太阳能路灯系统比高压钠灯路灯系统更有利。图 1 新余市太阳能 LED 路灯的效果图5 第一章 绪论1.1 新余市地理情况及基本气象新余位于江西中部,地处南昌、长沙两座省会城市之间;位于 27° 33’~ 28° 05’ ,东经 114° 29’~ 115° 24’ , 属亚热带湿润性气候,具有四季分明、气候温和、日照充足、雨量充沛、无霜期长、严冬较短的特征。表 1.1 新余市 20 年平均气象资料如下表所示 :水平日辐射量( ht )斜面日辐射量(ht) 年平均气温(0C) 相对湿度 (%) 日照时数 (h) 降雨(mm) 连续阴雨天数(d) 13094 13714 1707 80 165504 1594.8 6 表 1.2 纬度及辐射量等情况如下表所示:城市 纬度 日辐射量( Ht) 斜面日辐射量 修正值 kop 南昌 28. 67° 13094 13714 0.9640 1.2 LED 太阳能路灯系统的组成及功能新余市太阳能路灯系统由太阳能电池组件部分 (包括支架) 、 LED灯头、太阳能控制器 、蓄电池组(包括蓄电池保温箱)和灯杆有的还要配置逆变器等几部分构成。太阳能电池组件一般选用单晶硅或者多晶硅太阳能电池组件; LED灯头一般选用大功率 LED光源; 控制器一般放置在灯杆内, 具有光控、 时控制、过充过放保护及反接保护,更高级的控制器更具备四季调整亮灯时间功能、半功率功能、智能充放电功能等;蓄电池一般放置于地下或则会有专门的蓄电池保温箱,可采用阀控式铅酸蓄电池、胶体蓄电池、铁铝蓄电池或者锂电池等。太阳能灯具全自动工作,不需要挖沟布线,但灯杆需要装置在预埋件(混凝土底座)上。6 1.3 太阳能路灯照明系统工作原理介绍系统工作原理如图 3.1 所示,利用光生伏打效应原理制成的太阳能电池白天太阳能电池板接收太阳辐射能并转化为电能输出,经过充放电控制器储存在蓄电池中,夜晚当照度逐渐降低至 10lux 左右、太阳能电池板开路电压 4.5V 左右,充放电控制器侦测到这一电压值后动作,蓄电池对灯头放电。蓄电池放电 10 小时后,充放电控制器动作,蓄电池放电结束。充放电控制器的主要作用是天黑时自动开灯;天亮时自动关灯;在蓄电池电量不足时,自动断开负载,防止蓄电池过放电;并有短路保护、反接保护等。图 1.1 太阳能 led 路灯系统原理图1.4 设计思路及其设计原则设计思路:太阳能路灯的设计与一般的太阳能照明相比,基本原理相同,但是需要考虑的环节更多。首先是根据用电负载( LED光源)的用电量,确定太阳能组件的功率,然后确定蓄电池的容量,再进行电气设计、光源设计和设备选型,最后进行系统的结构设计, 设计中要确保太阳能 LED路灯运行的稳定性和可靠性。设计的原则:对于照明系统设计一般我们需要考虑以下几个问题:( 1)从功能上 , 道路照明系统的主要功能是保证交通安全,提高交通运输效率、保障人身安全、提供舒适环境、提升工厂形象。7 ( 2)在满足道路照明各项功能需要的基础上,提高道路照明系统的能效,降低系统功耗,节约能源,减少污染,以达到节能和环保的目的。( 3)另外还要结合当地的光资源情况。1.5 新余市 led 路灯设计要求假设新余某道路的 LED路灯配置在次干道,选低档值 Eav=10 lx ,路面实际宽度 Ws为 8m,人行道为 1m,单侧排列,要求路灯每天工作 10h,保证连续 5 个阴雨天能正常工作。 位于 27° 33’ ~28° 05’ ,东经 114° 29’~ 115°,采用截光型灯具。第二章 LED 路灯系统设备介绍2.1 灯杆路灯灯杆即安装在路旁按道路照明用的用以支撑灯具的杆子。分为:不锈钢灯杆,我国采取的方式是进行热镀锌表面处理,热镀锌符合国际标准的产品寿命可以达到 15 年。否则远远达不到。铁质灯杆,只是表面做一下喷涂 (刷漆或喷粉处理) , 寿命是 3~5 年。 铝合金灯杆,高强度铝合金制造,不仅人性化地保护了人员安全,而且强度高,不需要任何表面处理也有超过 50 年的耐腐蚀性,而且非常美观。看起来更加高档2.2. LED 路灯的定义即半导体照明灯,以发光二极管作为光源,因其是一种固态冷光源,具有环保无污染、耗电少、光效高、寿命长等特点,做成的 LED路灯。传统的路灯常采用高压钠灯,高压钠灯整体上光效低的缺点造成了能源的巨大浪费,而大功率 LED路灯以高效、安全、节能、环保、寿命长、驱动特8 性好、响应速度快、抗震能力高、显色指数高等独特的优势逐渐走入人们的视野、成为目前世界上最具有替代传统光源优势的新一代节能光源,因此, LED路灯将成为道路照明节能改造的最佳选择。图 2.1 传统高压钠路灯灯具(左)和 LED 路灯灯具(右)2.2.1 LED 的结构及发光原理LED是英文 light emitting diode (发光二极管)的缩写,是一种固态的半导体器件, 它可以直接把电转化为光。 LED的心脏是一个半导体的晶片,晶片的一端附 三丰 LED在一个支架上,一端是负极,另一端连接电源的正极, 使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是 P型 [1] 半导体,在它里面空穴占主导地位,另一端是 N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个“P -N 结”。当电流通过导线作用于这个晶片的时候,电子就会被推向 P区,在 P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是 LED发光的原理。而光的波长决定光的颜色,是由形成 P-N 结材料的禁带宽度决定的。它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,9 起到保护内部芯线的作用,所以 LED的抗震性能好,大功率 LED,一般指大于 0.65W,图 2.2 发光二极管结构图发光二极管的核心部分是由 p 型半导体和 n 型半导体组成的晶片,在p 型半导体和 n 型半导体之间有一个过渡层,称为 p-n 结。在某些半导体材料的 PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。 PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称 LED。 当它处于正向工作状态时(即两端加上正向电压) ,电流从 LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。2.2.2 LED 路灯的特点与应用优势LED路灯与常规高压钠灯路灯不同的是, 大功率 LED路灯的光源采用低压直流供电、由 GaN基功率型高蓝光 LED与黄光荧光粉合成的高效白光二极管,具有高效、安全、节能、环保、寿命长、响应速度快、显色指数高等独特优点,可广泛应用于城市道路照明。外罩可用 pc 管制作,耐高温达 135 度,耐低温达 -45 度。10 发光二极管 (LightEmittingDiode ,简称为 LED)是基于半导体 PN结形成的用微弱的电能就能发光的高效固态光源,在一定的正向偏置电压和注入电流下,注入 P 区的空穴和注入 N区的按目前市场产品的输入功率对 LED分类.其中输入功率为几十 mW的,称为传统的小功率芯片;其输入功率小于 1 W 的,为功率 LED;输入功率等于 1 W 或大于 1 W 的,则为 W级功率 (大功率 )LED。目前大功率比较常见的有 1, 3, 5, 8, 1OW。已批量应用的有 1 W 和 3 W LED,并正朝大电流 (300 mA~ 1. 4 A) 、高效率 (60 ~ 1 204 lm / W)、亮度可调的方向发展。大功率 LED路灯采用单颗功率大于 1 W以上的 LED。选用美国 CREE公司的3 W LED 将多个芯片集成于印刷电路板上排列为一定间距的点阵作为平面发光源,组合成一个大功率 LED单体模块,装入路灯灯具中,借此提高芯片面积,并增加发光量。将多个 LED集中在一起设计道路照明,除足够的光通量和合理的光学设计保证合理的光分布外,更为重要的是散热问题。由于路灯具有户外夜间使用,散热面位于侧上面以及体型受限制较小等特点,有利于空气自然对流散热,所以 LED路灯选择自然对流散热方式,同时整灯采用高导热系数铝作为散热主体,解决了 LED的散热问瞬2.2.3 新余市某道路道路照明灯具的具体要求主要有以下几个指标:1 . 灯具应采用多种配光曲线的反射器,满足不同照射面积、距离及照明效果的要求,同时可以减少眩光,提高灯具的效率;灯具外观要尽量保持一致性,以利于美观。2 . 灯具要具有良好的防护等级,包括防尘、防水及防撞击的能力,灯具前端要配有防撞击的钢丝网,以保证在球打击到灯具的玻璃面罩时不会损坏内部光源,以使损坏降低到最小程度。3 . 灯具应使用高显色性、高光通量、高效率、长寿命的光源,能够营造比较自然的光线4 . 从投资成本及运行成本的考虑,采用大功率光源的灯具是比较合理的选择,可以节约灯具、电缆、灯杆及其他的工程成本;灯具数量的减少自然带来运作成本的降低, 更有利于 LED通用照明尚处于快速发展的初期,洗牌过后行业发展环境更为健康。节能、环保、健康、可设计性强等一系列优点决定了 LED进入通用照明领域的趋势将不可逆转。 尽管 2011 年 LED11 通用照明市场已呈快速发展之势 , 但很多业内人士将市场渗透率达到 10%看做一个标志性事件 , 并认为 LED在通用照明领域的渗透率将在 2012 年超过 10%,从而将 2012 年定义为 LED通用照明元年。2.3 太阳能电池板太阳能电池板是太阳能路灯中的核心部分,也是太阳能路灯中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送至蓄电池中存储起来。太阳能电池主要使用单晶硅为材料。用单晶硅做成类似二极管中的P-N 结。工作原理和二极管类似。只不过在二极管中,推动 P-N 结空穴和电子运动的是外部电场,而在太阳能电池中推动和影响 P-N结空穴和电子运动的是太阳光子和光辐射热。也就是通常所说的光生伏特效应原理。目前光电转换的效率, 大约是光伏电池效率大约是单晶硅 13%- 15%, 多晶硅 11%- 13%。目前最新的技术还包括光伏薄膜电池。2.3.1 硅太阳电池的工作原理与结构太阳能电池发电的原理主要是半导体的光电效应,一般的半导体主要结构,如图 4.1 。图 2.3 图 4.1 中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。当含硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,它的形成可以参照图 4.2 所示。12 图 2.4 图 4.2 中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。而实心的表示掺入的硼原子,因为硼原子周围只有 3 个电子,所以就会产生入图所示的空心的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成 P( Positive )型半导体。同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成 N( Negative )型半导体。实心的为磷原子核,小的为多余的电子,如图 4.3 所示。图 2.5 N 型半导体中含有较多的空穴,而 P 型半导体中含有较多的电子,这样,当 P型和 N型半导体结合在一起时, 就会在接触面形成电势差, 这就是 PN结。如图 4.4 所示。图 2.6 当 P型和 N型半导体结合在一起时,在两种半导体的交界面区域里会13 形成一个特殊的薄层 ) ,界面的 P 型一侧 带负电, N 型一侧 带正电。这是由于 P 型半导体多空穴, N 型半导体多自由电子,出现了浓度差。 N 区的电子会扩散到 P 区, P 区的空穴会扩散到 N 区,一旦扩散就形成了一个由 N指向 P的“内电场”,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是 PN结。当晶片受到光后, PN结中, N型半导体的空穴往 P 区移动,而 P 区中的电子往 N 区移动, 从而形成从 N 区到 P 区的电流。 然后在 PN结中形成电势差,这就形成了电源 ,如图 4.5 所示。图 2.7 由于半导体不是电的良导体,电子在通过 P- N 结后如果在半导体中流动,电阻非常大,损耗也就非常大。但如果在上层全部涂上金属,阳光就不能通过,电流就不能产生,因此一般用金属网格覆盖 P- N 结,如图4.5 所示,以增加入射光的面积。另外硅表面非常光亮,会反射掉大量的太阳光,不能被电池利用。为了使太阳能电池板最大限度地减少光反射 , 将光能转变为电能 , 科学家们给它涂上了一层反射系数非常小的保护膜,使太阳能电池板的表面呈紫色,将反射损失减小到 5%甚至更小。 一个电池所能提供的电流和电压毕竟有限,于是人们又将很多电池并联或串联起来使用,形成太阳能光电板。2.3.2 太能能电池组件太阳能电池组件由进口 (或国产) 单晶 (或多晶) 硅太阳能电池片串并联,用钢化玻璃、 EVA及 TPT热压密封而成,周边加装铝合金边框,具有抗风、抗冰雹能力强、安装方便等特性。广泛应用于太阳能照明、灯具、户用供电、公路交通、建筑及光伏电站等领域14 图 2.8 太阳能电池组件2.3.2 太阳能电池的基本特性太阳能电池阵列的伏安特性具有强烈的非线性。太阳能电池阵列的额定功率是在以下条件下定义的:当日射 S=l000W/ m2;太阳能电池温度T=25℃;大气质量 AM=1.5 时,太阳能电池阵列输出的最大功率便定义为它的额定功率。太阳能电池阵列额定功率的单位为“峰瓦” ,记以“ Wp” 。为了让太阳能电池组件在一年中接收到的太阳辐射能尽可能的多,要为太阳能电池组件选择一个最佳倾角。关于太阳能电池组件最佳倾角问题的探讨,近年来在一些学术刊物上出现得不少。通过 Hay模型的计算, 可以得到的不同倾角平面的月平均太阳辐照量变化。在不同角度倾斜面上,太阳辐照量差别较大,要为电池板选择合适的倾角使其能获得最大的太阳辐照量 [9] 。太阳能电池板分为单晶硅和多晶硅两种,多晶面积较大,发电效率没有单晶高,因此根据需要本设计采用 70W单晶硅太阳能电池组件。2.3.3 太阳能电池板组件构成(1) 钢化玻璃 ( 2) EVA ( 3)太阳能电池片( 4)背板 ( 5)接线盒 ( 6)铝合金边框15 2.4 蓄电池太阳能供电系统中, 蓄电池的性能好坏直接影响系统的综合成本及运行好坏和使用寿命。 蓄电池可分为: 酸性蓄电池和碱性蓄电池。 在光伏发电系统中, 目前最受欢迎的是免维护铅酸蓄电池, 正规名称叫阀控式密封铅酸蓄电池。 免维护蓄电池由于自身结构上的优势, 电解液的消耗量非常小, 在使用寿命内基本不需要补充蒸馏水。它还具有耐震、耐高温、体积小、自放电小的特点。使用寿命一般为普通蓄电池的两倍。2.4.1 铅酸蓄电池的结构铅酸蓄电池的电极主要由金属铅制成,电解液是硫酸溶液的一种蓄电池。一般由正极板、负极板、隔板、电池槽、电解液和接线端子等部分组成。如图 4.8 所示。图 2.9 铅酸蓄电池的示意图2.4.2 铅酸蓄电池的工作原理铅酸蓄电池是一种利用化学反应,把化学能转变为低压直流电能的电化学电源设备。它具有能释放能量又有能储存能量,它能把其它能量转换为电能储存起来。铅酸蓄电池电动势的产生,如图 4.9 所示:16 图 2.10 铅酸蓄电池电动势的产生铅酸蓄电池充电后,正极板二氧化铅( PbO2) ,在硫酸溶液中水分子的作用下,少量二氧化铅与水生成可离解的不稳定物质 -- 氢氧化铅( Pb(OH)4) ,氢氧根离子在溶液中,铅离子( Pb4+)留在正极板上,故正极板上缺少电子。铅酸蓄电池充电后,负极板是铅( Pb) ,与电解液中的硫酸( H2SO4)发生反应,变成铅离子( Pb2+) ,铅离子转移到电解液中,负极板上留下多余的两个电子( 2e) 。可见,在未接通外电路时(电池开路) ,由于化学作用,正极板上缺少电子,负极板上多余电子,两极板间就产生了一定的电位差,这就是电池的电动势。其原理可通过下面的反应方程式来表示:负极: Pb + H2SO4 → PbSO4 + 2H+ +2e 正极: PbO2 + H2SO4 + 2H+ +2e → PbSO4 + 2H2O 总反应: Pb + PbO2 + 2H2SO4→ 2PbSO4 + 2H2O此反应产生的电压:E = E0 + ( 2RT/nF) 3 10Ln( aH SO4 /aH 2O)= 2.04 + 0.059 3 l0 Ln ( aH SO4 /aH2O)从此可以看出,当 aH SO4 /aH 2O=1 时,此反应产生的电压 E = E0 =2.04V, 这被称为标准状态下铅酸电池的标准电动势。 人们有时为了方便,称铅酸电池的额定电压是 2V,就是缘于此。需要指出的是, 2V 指的是单格电压,如果串联了 3 个单格,则电压为 6V,串联了 6 个单格,电压为12V; 反之,一个额定电压为 12V 的铅酸电池必定串联了 6 个单格,额定电压为 8V 的电池串联了 4 个单格。放电时负极的活性物质—海绵状的铅与电解液硫酸反应生成硫酸铅,并释放出电子,而正极的活性物质—二氧化铅接收负极释放的电子并与电解液硫酸反应生成硫酸铅和水17 2.5 太阳能控制器太阳能控制器应用于太阳能光伏系统中,协调太阳能电池板、蓄电池、负载的工作,是光伏系统中非常重要的组件。使整个太阳能光伏系统高效,安全的运作。2.5.1 控制器的基本工作原理太阳能电池的输出特性曲线如图 4.10 所示。太阳能电池的伏安特性具有很强的非线性, 即当日照强度改变时, 其开路电压不会有太大的改变,但所产生的最大电流有相当大的变化,所以其输出功率与最大功率点会随时改变。然而当光强度一定时,太阳能电池输出的电流一定,可认为是恒流源。因此,必须研究和设计性能优良的光伏控制器,才能更有效的利用太阳能。图 4.11 太阳能电池的输出特性曲线太阳能电池将吸收的光能转换成电能而通过充放电控制器对蓄电池充电。充放电控制器的功能主要有两个,一是对蓄电池的充放电保护,以避免蓄电池有过充或过放的情形发生,而蓄电池的任务则是储能,以便在夜间或阴雨天供给负载用电;二是提供稳定的直流电压源供给逆变器或直流负载使用。本设计系统未用到逆变器。0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 0.5 0.8 1.2 输出电压(归一化单位)100mV/cm, 25 ℃PmaxI P 18 2.5.2 蓄电池充电当系统检测到环境太阳光线充足时,控制器就会进入充电模式。蓄电池充电主要有两个比较重要的电压值:深度放电电压和浮充电电压。前者代表蓄电池充电的最高电压,这些参数可从蓄电池产品手册上查到。在电路设计中针对 12V蓄电池,分别设置深度放电电压为 11V和浮充电电压为13.8V。具体充电模式见表 1 所示。表 1 蓄电池充电模式蓄电池电压 VBAT 控制器工作模式欠压保护值 13.8V 恒流充电模式,确保蓄电池电压稳定在 13.8V 从表 1 可以看出恒流充电模式会用到 MPPT算法, MPPT算法有很多种方式可以实现,总的来说各有优劣,设计中采用相对简单的扰动观察法来实现。这种方法是通过增大或者减少充电电路开关信号 PWM占空比,然后观察输出功率是变大还是变小,由此来决定下一步是增大还是减小占空比。由于太阳能电池的输出变化相对比较缓慢,而且是单级点,所以采用这种方式可收到比较好的 效果。2.5.3 蓄电池给 LED供电当系统检测到环境太阳光线不足时, 就会进入蓄电池给 LED供电模式。LED电流通过高位电流检测芯片( TSC101AILT)采样送回 MCU,有 MCU通过调整开关信号 PWM的占空比来获得恒定输出电流。 为了达到节能的目的,LED 的恒定电流值会根据系统检测的环境光强度来调整。当环境光由暗变亮时,系统的输出电流也会相应从小变大;当环境光照完全暗下来时,系统的输出电流也达到预设的最大值。除了由环境光照控制 LED的光输出,用户还可以通过设定开光 DIP1~ DIP4 的状态来设置 LED灯的开启时间,系统会根据 DIP1~ DIP4 的设定组合来控制 LED路灯工作在 5min~ 12h 的时间范围内。19 此外,为了提高系统的可靠性,在电路设计中设置了针对太阳能电池组件,蓄电池和 LED等一系列软硬件的保护功能。第三章 新余市 LED太阳能路灯系统的设计光伏发电系统容量的设计的主要目的就是计算出来系统在全年内能够可靠工作所需要的太阳能电池组件和和蓄电池的数量,同时要注意协调系统工作的最大可靠性的基础上尽量减少成本。光伏发电系统的容量设计汉族要包括负载用电量的估算,太阳电池组件数量和蓄电池容量的计算以及太阳电池组件安装最佳倾角的计算。其设计步骤按图所示进行3.1 灯杆的高度以及挑臂长度的确定3.1.1 路面宽度及有效宽度CJJ45 规定的路面有效宽度的计算见表 3.1 :表 3.1 路面有效宽度的计算确定负载功率 确定蓄电池容计算日辐照量决定方阵倾角估算方阵电流确定方阵功率决定方阵电压确定最佳电流列出基本数据图 光伏系统发电量的设计步骤20 有效宽度单侧排列 双侧排列中间排列悬挑长度 XL Weff =Ws-XL =Ws-2XL =Ws ≤ 0.25H 注 1: Ws—路面实际宽度, m; XL—悬挑长度, m。3.1.2 路灯间距CJJ45规定的路灯间距 S、安装高度 H及路面有效宽度 W的关系见表 3.2 :表 3.2 灯具的配光类型、布置方式与灯具的安装高度、间距的关系配光类型 截 光 型 半 截 光 型 非 截 光 型布置方式 安装高度 H(m) 间距S(m) 安装高度 H(m) 间距S(m) 安装高度 H(m) 间距S(m) 单侧布置 H≥ Weff S≤ 3H H≥1.2WeffS≤ 3.5H H≥1.4WeffS≤ 4H 双侧交错布置H≥0.7Weff S≤ 3H H≥0.8Weff S≤ 3.5H H≥0.9Weff S≤ 4H 双侧对称布置H≥0.5WeffS≤ 3H H≥0.6WeffS≤ 3.5H H≥0.7WeffS≤ 4H 注 : Weff 为路面有效宽度 (m)。3.1.3 安装高度的确定根据以上表格得知新余市该道路的灯杆的高度 h 取 8m, 路灯间距取 24,悬挑长度为 1.5m, 灯仰角 15°3.2 LED 功率的确定3.2.1 、“利用系数” U LED路灯的“利用系数”见下表 3.3 :表 3.3 LED 路灯照明“利用系数” U灯具仰角 0° 5° 10° 15°W/H 屋边 路边 总系 屋边 路边 总系 屋边 路边 总系 屋边 路边 总系21 数 数 数 数0.5 0.25 0.36 0.61 0.2 0.35 0.55 0.18 0.34 0.52 0.15 0.32 0.47 0.6 0.27 0.4 0.67 0.22 0.39 0.61 0.2 0.42 0.62 0.17 0.41 0.58 0.8 0.3 0.47 0.77 0.26 0.46 0.72 0.22 0.48 0.7 0.19 0.47 0.66 1 0.32 0.53 0.85 0.28 0.54 0.82 0.24 0.56 0.8 0.21 0.55 0.76 1.5 0.36 0.55 0.91 0.31 0.59 0.9 0.26 0.63 0.89 0.22 0.64 0.86 2 0.37 0.57 0.94 0.34 0.62 0.96 0.27 0.64 0.91 0.23 0.69 0.92 2.5 - - - 0.63 - 0.67 - 0.71 3 - - - 0.64 - 0.68 - 0.72 4 - - - 0.65 - 0.69 - 0.73 注 1: W-道路宽度, H-灯具安装高度,称横向距离比。注 2:当有悬挑长度时,总 “利用系数”为“路边利用系数”加“屋边利用系数”。(见《照明工程学报》 1994 年 9 月第 5 卷第 3 期 51 页)。注 3:数据来源:徐连城文《基于市场需求的 LED路灯设计和营销策略思考》图。3.2.2 维 护 系 数道路照明的维护系数为光源的光衰系数和灯具因污染的光衰系数的乘积。根据目前我国常用道路照明光源和灯具的品质及环境状况,以每年对灯具进行一次擦拭为前提,维护系数可按表 3.4 确定。表 3.4 道路照明的维护系数灯具防护等级 维护系数> IP54 0.70 ≤ IP54 0.65 3.2.3 路面平均照度要求CJJ45规定的机动车交通道路照明标准值(维持值)见表 3.5 :22 表 3.5 机动车交通道路照明标准值级别道路类型路面亮度 路面照度 眩光限制阈值增量T1(%) 最大初始值环境比SR 最小值平均亮度Lav(cd/m2) 总均匀度Uo最小值纵向均匀度UL 最小值平均照度Eav(lx) 维持值均匀度UE最小值Ⅰ快速路、主干路(含迎宾路、 通向政府机关和大型公共建筑的主要道路,位于市中心或商业中心的道路 ) 1.5/2.0 0.4 0.7 20/30 0.4 10 0.5 Ⅱ 次干路 0.75/1.0 0.4 0.5 10/15 0.35 10 0.5 Ⅲ 支路 0.5/0.75 0.4 — 8/10 0.3 15 —注 : 1 表中所列的平均照度仅适用于沥青路面。若系水泥混凝土路面,其平均照度值可相应降低约30%。 根据本标准附录 A 给出的平均亮度系数可求出相同的路面平均亮度, 沥青路面和水泥混凝土路面分别需要的平均照度。2 计算路面的维持平均亮度或维持平均照度时应根据光源种类、灯具防护等级和擦拭周期,按照本标准附录 B 确定维护系数。3 表中各项数值仅适用于干燥路面。4 表中对每一级道路的平均亮度和平均照度给出了两档标准值, “ /”的左侧为低档值,右侧为高档值。3.2.4 新余某道路的 led 路灯功率的计算由表 2 确定 k=0.65 ;由表 3 计算 Weff = Ws-XL=8-1=7m;由前述知,道路灯双侧对称排列时 N=2;查表 1,因 W/H=8/8=1对应的 15°仰角总“利用系数”为 0.72 ;F = Eav*Weff*S / (U*k*N) =( 10*7*24 ) /(0.72*0.65*1)=3589 ( lm)再根据 LED路灯的参数知道 42 瓦的 led 路灯的光通量为 4200lm,4200lm>3589lm , 所以新余某道路的 LED路灯的功率为为 42 瓦23 3.3 最佳倾角和方位角的设计关于太阳能电池组件最佳倾角问题的探讨,近年来在一些学术刊物上出现得不少。本次路灯使用地区为新余地区,依据本次设计参考相关文献中的资料 [1] ,选定太阳能电池组件支架倾角为 40° 。1. 最佳倾角的设计新余市纬度 A=28° ,方阵的倾角为 B=A+12° =40° 。2. 方位角的设计方位角 =(一天中负荷的峰值时刻( 24 小时制)- 12)3 15+(经度- 116)太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。3.4 LED 路灯系统蓄电池数量的设计(1) 负载日耗电量QF = P3 h/V = 423 10/12 =35(A2 h) 3-4-1 式式中, V 为系统蓄电池标称电压。(2) 满足负载日用电的太阳能电池组件的充电电流I1 =Q3 1.05/h/0.85/0.9 = 11.67(A) 3-4-2 式式中, 1.05 为太阳能充电综合损失系数; 0.85 为蓄电池充电效率;0.98 为控制器效率。(3) 蓄电池容量的确定。满足 7 个阴雨天能正常工作的电池