Presenation_perovskite workshop Hangzhou_Dong Zhang_distributed
Efficient and stable perovskite solar cells and modules for hybrid tandem applications Dong Zhang, Mehrdad Najafi, Valerio Zardetto, Ilker Dogan, Henri Fledderus, Wiljan Verhees, Jürgen Hüpkes, Gianluca Coletti, Hans Linden, Sjoerd Veenstra, Bart Geerligs, Tom Aernouts, Adriana Creatore, Ronn Andriessen Solliance research partners Solliance industry partners Materials Equipment PV Manufacturers End users Acknowledgements Outline Example Footer text (insert Footer) ▪ 3 • Introduction to hybrid tandem with perovskite • 4T hybrid tandem cells: Perovskite + Si or CIGS • Upscaling • Stability of perovskite modules • Summary 6 November, 2019 Outline Example Footer text (insert Footer) ▪ 4 • Introduction to hybrid tandem with perovskite • 4T hybrid tandem cells: Perovskite + Si or CIGS • Upscaling • Stability of perovskite modules • Summary 6 November, 2019 Motivation for tandem PV: €/Wp ITRPV report 2019 ▪ 56 November, 2019 Motivation for tandem PV: Efficiency A. Polman and H. Atwater, Nature Materials 11, 174 (2012) ▪ 66 November, 2019 • Thermodynamic losses in solar energy conversion • Multi-junction: solution for 40% efficiency ▪ 76 November, 2019 • Mass production after 2021 • Market share starts in 2023 Predicted market share of c-Si based tandem ITRPV report 2019 Motivation of using perovskite as top cells ▪ 8 6 November, 2019 S. De Wolf et al., J. Phys. Chem. Lett. 5, 1035-1039 (2014) ✓ Defect tolerance ✓ High efficiency: record 25.2% ✓ Simple preparation process ✓ High absorption coefficient ✓ Sharp absorption edge ✓ Tunable bandgap G.E. Ep ron et al. Nature Reviews Ch mistry 1, 0095 (2017) Scalability Stability Outline ▪ 9 • Introduction to hybrid tandem with perovskite • 4T hybrid tandem cells: Perovskite + Si or CIGS • Upscaling • Stability of perovskite modules • Summary 6 November, 2019 Pros and cons of 4T and 2T tandem ▪ 106 November, 2019 Yu et al. nature energy 1, 16137(2016) 2-terminal (2T) Top cell (high Eg) Bottom cell (low Eg) + - × Current matching × Direct processing of top cells on bottom cells ✓ module and system integration +4-terminal (4T) Top cell (high Eg) Bottom cell (low Eg) - + - ✓ Mechanical stacking ✓ More freedom for the cell processing ✓ Expected higher annual energy yield × Additional requirements (cost and quality) for transparent electrodes × Complication and additional cost on PV systems Challenges for 4T tandem ▪ 116 November, 2019 0.0 0.4 0.8 1.2 1.6 2.0 1100 900 700 500 300 Wav el en gth (n m) Spec tra l i rr ad ian ce (W m -2 nm -1 ) HTL Perovskite Glass ETLBuffer layer front TCO rear TCO Optical Losses: • Reflection • Parasitic absorption ➢ front TCO ➢ HTL • Limited absorption • NIR transmission of perovskite cells (for a given bottom cell) ➢ Reflection ➢ Free carrier absorption c-Si or CIGS cells 400 600 800 1000 1200 0.0 0.2 0.4 0.6 0.8 1.0 EQE Wav ele ngth (nm) Perovskite t op cell ( 19.5 mA/cm 2 ) MWT -SHJ bottom cell (1 6.1 m A/cm 2 ) T ande m ce ll (35 .6 m A/cm 2 ) MWT -SHJ single junctio n ( 39.8 mA/cm 2 ) Challenges for 4T tandem ▪ 126 November, 2019 1. Parasitic absorption of TCO and HTL 2 2. Reflection 3. Free carrier absorption from TCO or highly doped HTL buffer layer by ALD; TCO by sputtering; laser patterning + c-Si cells Glass TCO TCO Mask HTL/Perovskite/ETL/buffer • Encapsulated 6 inch MWT-SHJ cell shaded to match the aperture area of perovskite module Perovskite scalability: First demonstration of 100 cm2 area-matched 4T perovskite/c-Si tandem ▪ 216 November, 2019 • PCE of 22.5% feasible with NIR-transparent TCO Perovskite scalability: demonstration of 100 cm2 area-matched 4T perovskite/c-Si tandem Cell type Description Voc(V) Jsc(mA/cm2) FF PCE Perovskite module Backward scan 33.1(1.10 per cell) 15.9 0.766 13.5% Forward scan 33.2(1.11 per cell) 15.9 0.762 13.4% 5 min MPPT - - - 13.5% MWT-SHJ cell single junction 0.711 39.3 0.804 22.5% Bottom cell 0.685 14.3 0.803 7.9% Tandem cell - - - - 21.4% Outline ▪ 22 • Introduction to hybrid tandem with perovskite • 4T hybrid tandem cells: Perovskite + Si or CIGS • Upscaling • Stability of perovskite modules • Summary 6 November, 2019 Perovskite stability: can perovskite grow old together with silicon? ▪ 236 November, 2019 ▪ 246 November, 2019 Stability of encapsulated 6 inch perovskite module Thermal stability (retain 90% PCE over 1000 h) 0 200 400 600 800 1000 1200 0 20 40 60 80 100 Normalized PCE (%) Time @ 85C (hou rs) MPP T Light soaking stability at ~40°C (retain ~100% PCE over 1000 h) 0 200 400 600 800 1000 1200 0 20 40 60 80 100 Normalized PCE (%) Time @ MPPT (ho urs) MPP T • Damp heat testing (85°C/RH85) is ongoing • No degradation after 240h Summary ▪ 25 ▪ Reduction of TCO&HTL parasitic absorption and reflection losses increases the Jsc of tandem cell by 3 mA/cm2 ▪ 4T tandem efficiency of 27.1% for perovskite + Si cells, 25% for perovskite + CIGS cells and 23% for flexible perovskite + flexible CIGS cells ▪ 4T tandem efficiency of 21.4% on 100 cm2 with perovskite module and MWT-SHJ cell, 22.5% in reach. ▪ Encapsulated perovskite modules can retain over 90% of the initial performance after over 1000 hours of thermal and light soaking stresses respectively ▪ Damp heat testing is ongoing and no degradation after 240 h Thank you for your attention Dr. Dong Zhang dong.zhang@solliance.eu +31 6 1098 0870 Dr. Sjoerd Veenstra sjoerd.veenstra@solliance.eu Dr. Ronn Andriessen ronn.andriessen@solliance.eu