双面太阳能电池金属化的模拟和优化-任通
电气全产业链系统解决方案集成提供商 双面太阳能电池金属化的模拟和优化 The simulation and optimization of the metallization structure for bifacial solar cell 2018.11 浙江正泰太阳能科技有限公司 任通 [研发工程师 ] 1 双面电池栅线优化的意义Incentives of grid optimization for bifacial solar cells 目录 CONTENTS 2 串阻模型及栅线优化方向Modelling of series resistance and grid pattern outlook 3 正泰双面单晶 PERC电池Bifacial mono-crystalline PERC cell of Chint Company 双面电池栅线优化的意义 Incentives of grid optimization for bifacial solar cells 双面电池栅线优化的意义 Incentives of grid optimization for bifacial solar cells 常规单面电池 (1) 技术路线的升级为我们提供了更丰富的栅线设计方案 A wider range of metal grid patterns are made possible by ever-developing technologies (2) 更高的电池效率和更低的浆料耗量是我们优化栅线设 计的目标 It is our fundamental goal to improve cell efficiency and reduce paste consumption by optimizing grid pattern. 双面电池栅线优化的意义 Incentives of grid optimization for bifacial solar cells ITRPV Working Group. International Technology Roadmap for Photovoltaic (ITRPV) 2017 Results[J]. 2018. 栅线宽度 Finger width 主栅数量 Busbar number 耗量 Paste consumption 双面电池栅线优化的意义 Incentives of grid optimization for bifacial solar cells 双面电池 (1) 需要同时考量正、背面的栅线设计方案 It is necessary to consider front and rear metallization pattern at once. (2) 需对正、背面发电效率进行取舍。 A trade-off is required between front and rear conversion efficiency. 串阻模型及栅线优化方向 Modelling of series resistance and grid pattern outlook 串阻模型及栅线优化方向 Modelling of series resistance and grid pattern outlook 银栅线 Ag finger 发射极 N emitter 基底 P base 背面铝栅线 Rear Al finger 1 23 5 4 6 7 8 1 基电阻 Base resistance 2 发射极电阻 Emitter resistance 3 银硅接触电阻 Ag-Si contact resistance 4 铝硅接触电阻 Al-Si contact resistance 5 正面银细栅电阻 Front finger resistance 6 正面主栅电阻 Front busbar resistance 7 背面铝细栅电阻 Rear finger resistance 8 背面主栅电阻 Rear busbar resistance 正面 Front side 背面 Rear side 串阻模拟 Simulation of series resistance 串阻模型及栅线优化方向 Modelling of series resistance and grid pattern outlook 正面受光 Front incidence 背面受光 Rear incidence & 1. 将电池片分解成以下几种受光场景 Decompose the cell structure into several parts in term of light incidence. 2. 计算每种场景的光生电流密度 Calculate the photogenerated current density in each occasion. 3. 根据正、背面栅线结构计算光生电流 Calculate the photogenerated current according to metallization structure of both sides. 光生电流模拟 Simulation of photogenerated current 串阻模型及栅线优化方向 Modelling of series resistance and grid pattern outlook 串阻模型及栅线优化方向 Modelling of series resistance and grid pattern outlook 以背面栅线数量为例,比较模拟和实测情况 A comparison between simulated values and real experiment data was made in terms of varying rear finger number from 100 to 190 模拟 实测 正面 Isc( A) 背面 Isc( A) 正面效率( %) 背面效率( %) 串联电阻 Rs( mOhm) 9.90 A 9.91 A 9.88 A 7.80 A 7.51 A 6.68 A 21.68%21.58%21.48% 16.79% 16.23% 14.44% 2.9mOhm 2.8 mOhm 2.3 mOhm 3.0 mOhm 2.7 mOhm 2.3 mOhm **其他参数详见附录 Other input parameters is shown in appendix 串阻模型及栅线优化方向 Modelling of series resistance and grid pattern outlook 双面电池栅线设计的重点在于背面细栅的数量和宽度 The number and width of rear fingers are the main focus of bifacial cell grid designing (1) 背面栅线数量越多,宽度越宽, 则双面电池正面效率越高,背面效 率越低。 The front side efficiency improves with more fingers and wider finger while the rear side has the opposite tendency. (2) 细栅的宽度的降低受 限于设备精 度 。 The availability of rear finger width deduction is subject to alignment precision. (3) 整体上来说降低细栅宽度,增加 细栅数量有利于提升双面电池整体 电性能表现(综合正、背面) Increasing finger number while decrease width is favorable for overall characteristics of bifacial cell. 正面效率 Front efficiency 背面效率 Rear efficiency 正面效率 + 10% X 背面效率 **其他参数详见附录 Other input parameters is shown in appendix 串阻模型及栅线优化方向 Modelling of series resistance and grid pattern outlook MBB技术也将融入双面电池。 MBB technology is to be integrated into bifacial solar cells (1) 多主栅技术对正、背面效率都有 提升。 Both front and rear efficiencies are expected to increase with the introduction of MBB technology. 正面效率 Front efficiency 背面效率 Rear efficiency 正面效率 + 10% X 背面效率 **其他参数详见附录 Other input parameters is shown in appendix **Kw指主栅与细栅宽度的比值 **Kw is the ratio of busbar width and finger width 串阻模型及栅线优化方向 Modelling of series resistance and grid pattern outlook 硅与金属的 接触电阻 计算有待完善。 The contact resistance calculation remains to be perfected (1) 理论模型 The mechanism and modelling (2) 接触电阻率的测量。 The measurement of contact resistivity [1] Berger H H. Models for contacts to planar devices[J]. Solid-State Electronics, 1972, 15(2): 145-158. [2] Zhang P, Lau Y Y, Gilgenbach R M. Analysis of current crowding in thin film contacts from exact field solution[J]. Journal of Physics D: Applied Physics, 2015, 48(47): 475501. [3] Guo S, Gregory G, Gabor A M, et al. Detailed investigation of TLM contact resistance measurements on crystalline silicon solar cells[J]. Solar Energy, 2017, 151: 163-172. [1] [2] [3] 正泰双面单晶 PERC电池 Bifacial mono-crystalline PERC cell of Chint Company 正泰双面单晶 PERC电池 Bifacial mono-crystalline PERC cell of Chint Company 量产平均正面效率可达 21.8% Average front efficiency reaches 21.8% 双面率高达 75% Bifaciality surpasses 75% 5小时光衰小于 1% 5-hour-light-induced degradation is as low as 1% Thanks! **基本参数附录