solarbe文库
首页 solarbe文库 > 资源分类 > PDF文档下载

Refined optoelectronic properties of silicon nanowires for improving photovoltaic properties of crystalline solar cells a simulation study

  • 资源大小:826.24KB        全文页数:19页
  • 资源格式: PDF        下载权限:游客/注册会员/VIP会员    下载费用:8金币 【人民币8元】
游客快捷下载 游客一键下载
会员登录下载
下载资源需要8金币 【人民币8元】

邮箱/手机:
温馨提示:
支付成功后,系统会根据您填写的邮箱或者手机号作为您下次登录的用户名和密码(如填写的是手机,那登陆用户名和密码就是手机号),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦;
支付方式: 微信支付    支付宝   
验证码:   换一换

 
友情提示
2、本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   
4、下载无积分?请看这里!
积分获取规则:
1充值vip,全站共享文档免费下;直达》》
2注册即送10积分;直达》》
3上传文档通过审核获取5积分,用户下载获取积分总额;直达》》
4邀请好友访问随机获取1-3积分;直达》》
5邀请好友注册随机获取3-5积分;直达》》
6每日打卡赠送1-10积分。直达》》

Refined optoelectronic properties of silicon nanowires for improving photovoltaic properties of crystalline solar cells a simulation study

TOPICAL REVIEW OPEN ACCESS Emerging inorganic solar cell efficiency tables version 2 To cite this article Andriy Zakutayev et al 2021 J. Phys. Energy 3 032003 View the article online for updates and enhancements. This content was downloaded from IP address 123.139.57.166 on 28/06/2021 at 1204 J. Phys. Energy 3 2021032003 https//doi.org/10.1088/2515-7655/abebca Journal of Physics Energy OPEN ACCESS RECEIVED 22October2020 REVISED 27January2021 ACCEPTED FOR PUBLICATION 3March2021 PUBLISHED 16April2021 Originalcontentfrom thisworkmaybeused underthetermsofthe CreativeCommons Attribution4.0licence . Anyfurtherdistribution ofthisworkmust maintainattributionto theauthorsandthetitle ofthework,journal citationandDOI. TOPICAL REVIEW Emerging inorganic solar cell efficiency tables version 2 Andriy Zakutayev 1, Jonathan D Major2 , Xiaojing Hao3 , Aron Walsh4 ,5, Jiang Tang6 , Teodor K Todorov 7 , Lydia H Wong 8and Edgardo Saucedo9 ,∗ 1 NationalRenewableEnergyLaboratoryNREL,Golden,CO80401,UnitedStatesofAmerica 2 StephensonInstituteforRenewableEnergy,DepartmentofPhysics,UniversityofLiverpoolUL,LiverpoolL697ZF,UnitedKingdom 3 AustralianCentreforAdvancedPhotovoltaics,SchoolofPhotovoltaicandRenewableEnergyEngineering,UniversityofNewSouth WalesUNSW,Sydney,NSW2052,Australia 4 DepartmentofMaterials,ImperialCollegeLondonICL,ExhibitionRoad,LondonSW72AZ,UnitedKingdom 5 YonseiUniversityYU,Seoul03722,RepublicofKorea 6 WuhanNationalLaboratoryforOptoelectronics,HuazhongUniversityofScienceandTechnologyHUST,430074Wuhan,People’s RepublicofChina 7 IBMThomasJ.WatsonResearchCenter,YorktownHeights,NewYork10598,UnitedStatesofAmerica 8 SchoolofMaterialsScience HZB, Ge rman y [32 ]. Spin co ating of 2-me tho xy ethanol base d sol utio n. Cu 2ZnS n0.78 Ge 0.22 Se 4 12.3 0.527 32.2 72.7 0.519 1.11 Glass/M o/CZT GT Se/CdS/ ZnO/AZ O/A g/AR C EQE, in-house AIST ,Jap an [33 ].C o-e vap orat ion and rea cti ve annealing . Li 0.06 Cu 0.94 2ZnS nS,S e4 11.6 0.531 33.7 64.8 0.285 1.13 Glass/S iO x/M o/LiCZT SS e/ CdS/ZnO/AZ O/N i/A l/MgF 2 EQE, in-house EMP A,S witz erland; Uni ver sidad Autnoma de Madr id, Sp ain; HZB, Ge rman y[ 34 ].Spin co ating of DMSO base dsol utio n. Cu 2Zn 0.95 Mn 0.05 SnS,S e4 8.9 0.418 33.7 63.3 0.34 1.06 Glass/M o/CMZT SS e/CdS/ ZnO/AZ O/N i/A l EQE Nankai Uni ver sity ,China; Nat ional Inst itut eo fM ate rial Scie nce, Jap an [35 ]. Spin co ating of 2-me tho xy ethanol base d sol utio n. Cu 2Zn 0.96 Mg 0.04 SnS,S e4 7.2 0.419 37.2 46.5 0.3 1.01 Glass/S iO x/M o/CZMT SS e/ CdS/i-ZnO/AZ O/N i/ Al/MgF2 Uni ver sidad Autnoma de Madr id, Sp ain [36 ].P recur sor sol utio np repar ed by dime thy lsulf oxid eDMSO. C ont inue d 7 J. Phys. Energy 3 2021032003 AZakutayevet al Tab le 2. C ont inue d. Mat erial Eff. VO C V JSC mA cm − 2 FF Ar ea cm 2 Eg eV De vic est ruc tur e Means of ver ificat ion Inst itu tio ns and Co mme nts Cu 2S nS 3 5.1 0.290 34.5 51.3 0.3 0.95 Glass/M o/CT S/CdS/ i-ZnO/AZ O/N i/A l EQE, in-house Rits ume ikan Uni ver sity ,Jap an [37 ]. Abso rbe rp repar ed by Spu tte ring of Cu-S nS2 co mp ound, and e-b eam evap orat ion of NaF . Cu 2ZnS n0.91 I0.09 S,S e4 7.19 0.393 32.12 56.96 0.21 1.075 Mo-f oil/CZTISS e/CdS/ i-ZnO/IT O/A g EQE, in house Fujian JIangx ia Uni ver sity ,Fuzho u,China [38 ].A bso rbe ris de posit ed on fle xib le Mo foil by spin co ating of pre cur sor sol utio n base do n1,2-e thane dithiol edtH2 and 1,2-e thy lene diamine en sol utio n. Cu 2ZnS nx Ga 1− xS,S e4 10.8 0.455 36.48 65.05 0.21 1.162 Glass/M o/CZT GSS e/CdS/ iZnO/IT O/A g/MgF 2 EQE, in house He nan Uni ver sity [31 ].W ith AR C; thin film isd ep osit ed by spin co ating of pre cur sor sol utio nbase do ne thy lendiamine and 1,2 ethane dithiol. Cu 2S n1− xGe xS 3 6.73 0.442 26.6 57.1 0.17 1.09 Glass/M o/CT GS/CdS/ ZnOGa/A l EQE, in-house To yota Ce ntr al Res ear ch PCp htalo cyanine. 11 J. Phys. Energy 3 2021032003 AZakutayevet al well-establishedsolarcelltechnologies.However,fortheemergingsolarcelltechnologiesthataredeveloping veryquickly,suchcertificationisnotalwayspractical,soonlyin-housemeasuredphotovoltaicPV efficienciesareoftenreported.Thus,itisimportanttoreviewherecommonbestpracticesforin-housesolar cellefficiencymeasurements.Themostbasicrequirementsforlab-basedsolarcellefficiencymeasurements include a usingtheairmass1.5spectrumAM1.5forterrestrialcellsbychoosingthehighest-qualitysolarsimu- latoravailable; b applyingone-sunofilluminationwithintensityof1000Wcm −2 byadjustingthecell/simulatordistance tomatchtheexpectedcurrentofthereferencecell; c controllingcelltemperatureduringthemeasurementto25 ◦Cusingactivecoolingorheating; d usingfour-pointprobegeometrytoremovetheeffectofprobe/cellcontactresistance. Inaddition,thereareseveralotherbestpracticestofollow. a Areasofthemeasuredsolarcellshavetobecarefullydefinedusingdeviceisolationand/orlightmasking; thisisparticularlyrelevanttoabsorberswithlargecarrierdiffusionlengths. b Currentdensity–voltagemeasurementshavetobeperformedinbothforwardandreversedirections, whichisespeciallyimportantforemergingabsorberswithtendencyforhysteresis. c EQEmeasurementhastobereportedtoassistwithspectralcorrection,andintegratedwiththeAM1.5 referencespectrumtoobtainthecurrent,tobecomparedtoreportedJsc. d Statisticalanalysisresults,includingthenumberofthesolarcellsmeasured,andthemeanvalueshaveto bementioned. e Short-timeevolutionofthereporteddeficiencyhastobeverifiedatthemaximumpowerpointorwith thephotocurrentatmaximumpowerpoint. f Long-timestabilityanalysisisencouraged,underlightandelectricalbias,withmeasuredtemperature andhumidity. g Formulti-junctionsolarcells,theilluminationbiasandvoltagebiasusedforeachcellhavetobereported. Finally,wereemphasizethatthesearejustguidelinesforin-housesolarcellmeasurements,whenexternal certificationisnotpractical.However,researchersworkingonemergingsolarcelltechnologiesarestrongly encouragedtostrivetowardsperfectionandconsidersubmissionoftheirdevicestooneofthe internationallyrecognizedinstitutions. 2.Efficiencytables Table1 presentsthelistofmaterialsthathavebeenidentifiedfortheauthorsascertifiedsolarcells,andare consideredasthehighestreportedconversionefficiencyintheirclassoftechnology.Thelastpartoftable1 collectsthetechnologiesthatbeingcertified,donotfulfilsomeofthecriteriausedforincludingtheminthe principalsection.Table2 containsthelistofmaterialsanddeviceperformancefornon-certifiedsolarcells. Thecombineddatafrombothtablesisplottedinfigure2 ,whereitisseparatedintothreecategoriesmetal pnictidese.g.ZnSnP2 ,chalcogenidese.g.PbS,andhalidese.g.BiI3 . 3.Newentries 3.1.Oxides Therehavebeennonewrecordsreportedforsolarcellswithoxideabsorbers,butseveralimportantadvances havebeenmade.ForCu2 OabsorberswithGa2 O3 bufferlayersgrownbychemicalvapourdeposition,the Vocof1.78Vhasbeenachievedalbeitwithsmallphotocurrentof2mAcm −2 [65 ].Thisdemonstratesthe abilityofCu2 Otoreach80of VocentitlementbasedonShockley–QueisserlimitEg 2.2eV,and achieveinthefuture13efficiencyforthickerabsorberlayersbasedonnumericalmodels[ 66 ].Alow damagemagnetronsputteringmethodforfabricationofZnOcontactstoCu2 Osolarcellshasbeenalso recentlydemonstrated[67 ].TheprogressinCu2 Oandotheroxidesolarcellshasbeensummarizedina recentroadmaparticle[67 ]andabookchapter[68 ]. Asofthemoreexoticoxideabsorberswithperovskitestructureandferroelectricproperties,upto4.2 efficiencyhasbeenreportedinmixed-phaseBiMnO3 andBiMn2 O5 thinfilmabsorbers[18 ].Thereported Vocof1.5V, Jscof7mAcm −2 andfillfactorof0.58havebeenreportedtable 2 .Thisreportcomesfromthe samegroupthatpublishedon3.3efficiencyinsinglelayersand8.1inmultilayersofBi 2 FeCrO6 6years ago[41 ].Neitheroftheseexcitingresultspublishedhighprofilejournalshavebeenreplicatedbyother 12 J. Phys. Energy 3 2021032003 AZakutayevet al Figure2. Efficiencya,Vocb,JsccandFFdofthemostrelevantthinfilminorganicPVtechnologies,fromtables1 and2 . TheirperformanceiscomparedtothefullShockley–QueisserSQlimitfortheAM1.5spectrumsolidgreylineand50ofthe SQlimitdashedgreyline. groups,whichissomewhatconcerning.TheprogressinBiFeO3 derivatives[69 ]andotherperovskitesas photoferroicmaterialshasbeenrecentlyreviewed[70 ]. 3.2.Chalcogenides Fivenewresultsarereportedinthepresentversionforchalcogenides,withtwonewresultsfromkesterite andantimonychalcogeniderespectively,andthreenewentriesfromkesterite.Thefirstnewresultis12.5 efficiencypureselenidekesteriteCu2 ZnSnSe4 solarcellfabricatedonglassshownintable1 .Thishighest efficiencypureselenideCZTSesolarcellalsodemonstratesthesmallestVoc-deficitgivenbyEg/q−Vocof anyreportedkesteritefamilydevices.Thereportedefficiencyimprovementisrealizedbyengineeringthe localchemicalenvironmenti.e.properchemicalcompositionandcompleteoxidationofSntoSn4 during thegrowthofkesteritethin-film,particularlyatthepointintimewhentheformationofkesteriteinitiates. Withthisdefectcontrolmethod,thereportedelectricalpropertiesi.e.mobility,carrierconcentrationof kesteriteareimprovedandthedetrimentalintrinsicdefectsaresuppressed.Oneofthreenewentriesfor kesteriteintable2 isthemagnesium-alloyedkesterite.TheintroductionofsmallamountofMgintokesterite resultsinthe7.2efficiencyCu 2 Zn0.96 Mg0.04 SnS,Se4 solarcells.SuchsmallamountMgcanleadtothe changeinlatticeconstantandcarrierconcentrationofkesterite,whichseemstoplayasimilarroletoalkaline Lithium.NotablesubstitutionofgroupIIIelementsofInandGainCu2 ZnSnS,Se4 werealsoreportedto improvetheefficiencyeventhoughthereasonsforimprovementsarenotthoroughlyinvestigated[31 ]. Cd-substitutedCZTSisrecentlyreportedwithanewrecordof12.6[ 30 ]byengineeringthecharge extractionlayers.Wealsonotethatasignificantnumbersofgroupshavereportedefficienciesexceeding12 [8 ,30 ,71 ]andclosingthegapwithworldrecordefficiencyreportedbyIBMin2013[ 6 ].Mostofthese reports,however,havenotcompletelyeliminatedtheoriginofthedeepdefectswhicharewidelybelievedto causebandtailingandthesignificantVocdeficitinthisclassofmaterials.Recenttheoreticalanalysisand experimentalevidenceseemtoindicatethatamajorcontributiontothebandtailsisfromthedeep 2Cu Zn SnZndefectclusters[72 ,73 ].ThelatestexperimentalevidenceisdemonstratedintheCu2 CdZnS4 CCTSwhereCdsubstitutionofZninCu-poorCCTSsuppressthedeleterious2Cu Zn SnZndefectclusters andsignificantlyreducesbandgapfluctuations[21 ].ThisworksetsanewefficiencyrecordinCu2 CdZnS4 with7.96,whichisthehighestefficiencyamongthenovelcompoundsderivedfromCu–Zn–S/Se. 13 J. Phys. Energy 3 2021032003 AZakutayevet al Anothertwonewentriesintable2 arefromsimplechalcogenides,i.e.5.1efficiencyCu 2 SnS3 and6.73 efficiencyGe-alloyedCu2 SnS3 .NotablethatSn/GegradientisrealizedinthelatterCu2 Sn1 −xGexS3 CTGS. 3.3.Pnictides TherehavebeenseveralrecentreportsonZnSnP2 basedsolarcells[74 ].Thehighest3.4efficiencyreported todateisforZnSnP2 singlecrystalabsorberswithCd,ZnSbufferlayers[17 ],withJscof12mAcm −2 ,Voc of0.47andafillfactorof0.59table 2 .ThinfilmZnSnP2 solarcellwithCdSbufferlayerspreparedby phosphidationofZn/Snstackshadmuchlowerefficiencies0.02[ 75 ]comparedtocrystalbased ZnSnP2/CdSsolarcells2[ 76 ].All-phosphideZnSnP2 singlecrystaldeviceswithCdSnP2 bufferlayers showedclearrectificationbehaviourbutnophotoresponse[77 ]. 3.4.Halides ThenumberofpublishedpapersreportinghalidematerialsforPVmainlyperovskitehalides,areincreasing quickly,andinconsequenceseveralprogresseshavebeenreported.Mostofthehighefficiencyabsorbers becomesfromtheCs–Pbperovskitehalidefamily,andhaveshown1–3recordefficiencyimprovementin thelastyear.Someoftheseprogressesarerelatedtotheuseofadditivesforthebestcontrolofgrowth procedureandcrystallizationprocess. CsPbI3 therecordefficiencyhasimproveduptoanimpressive19.03.Wang et al[47 ]demonstrated thattheuseofDMAIisveryeffectivetomanipulatethecrystallizationprocessofCsPbI3 ,confirmingthatthe DMAIadditivewouldnotalloyintothecrystallatticeofCsPbI3 perovskite.Furthermore,theuseof phenyltrimethylammoniumchloridepassivatedCsPbI3 inorganicperovskite,allowingfortheimpressive efficiencyimprovement,althoughthereisadebateifDMAandDMAIcansitattheA-sitesoftheperovskite structureandthesematerialsarenon-fullyinorganic. CsPbBr3 althoughmoremodest,CsPbBr3 hasachievedanewrecordof10.91.Todoso,Tong et al [46 ]developedagrowthprocedureinducedbyphasetransitionthatmakesthegrainsizeofperovskitefilms moreuniform,andalsolowersthesurfacepotentialbarrierthatexistsbetweenthecrystalsandgrain boundaries. CsPbBrI2 andCsPbIBr2 inthefirstcaseonlylimitedefficiencyimprovementhasbeenreportedinthe lastmonths,achieving16.79efficiencyrecordwithandimpressive Vocof1.32V.Thisimprovementwas againrelatedtopassivationeffectandn-typedopingbyintroducingCaCl2 ,observingalsothatthe crystallinityoftheCsPbI2 Brperovskitefilmwasenhanced,andthetrapdensitywassuppressedthroughthe useofCaCl2 treatment[48 ].Inthesecondcase,arecordefficiencyof11.10hasbeenreportedwithan improvedVocof1.21V,butwithalargeenhancementoftheFFupto74.82[ 49 ].Thishasbeenpossible thankstotheintroductionofaLewisbasePEGasadditiveobservingsuppressednon-radiative electron–holerecombinationandafavourableenergybandstructure. Otherhalideperovskitesdonotreportimportantprogressesintermsofconversionefficiencyinthelast months. 3.5.Mixed-anion Startingfromthissecondeditionoftheefficiencytables,weareincludinganewclassofPVabsorbersbased onmixedantimonyand/orbismuthchalcogenide-halides.SpecialmentionmeritstheworkofNeoandSeok [55 ],whereusingafastvapourprocesstheydevelopedSbSIandSbSI-interlayeredSb2 S3 solarcells, demonstratingaTiO2 /Sb2 S3 /SbSI/HTMdevicewithaconversionefficiencyof6.08.Efficienciesbetween 1and4havebeenalsoreportedforSbSI,Sb,BiSIandBiSIsystems,demonstratingthelargepotential ofthesemixedchalcogenide-halidecompoundsandtheincreasedinterestthatthescientificcommunityis puttinginsuchmaterialsforsolarcellsapplications. 4.LatestprogressesinselectedtopicQ-1DabsorbersforPV Traditionally,absorbermaterialsforPVsarelimitedtosemiconductorswiththree-dimensional3Dcrystal structurei.e.GaAs,CdTeandCuIn,GaSe2 thusenjoyingthenearlyisotropicfilmgrowthandcarrier transport.Recently,thepreviouslyabandonedlow-dimensionalabsorbermaterialshaveattractedwide attentionbecauseoftheirsimpleandEarth-abundantcomposition,andperformanceimprovement [4 ,60 ,78 ].Specifically,theQ-1Dbinaryantimony-basedchalcogenideSb 2 S3 ,Sb2 Se3 andSb2 S,Se3 alloy solarcellsarenontoxicandstable,andhaveachievedimpressivepowerconversionefficiencyof7–10 [4 ,12 ,79 ].Q-1DSb-basedchalcogenidesaremadeupofcovalentlybonded[Sb 4 Se6 ]n ribbons,andthese ribbonsarestackedviaweakVanderWaalsforcealonga-andb-axis[80 ].Basedondeviceconfiguration, Q-1DSb-basedchalcogenidesolarcellscanbedividedintosensitizedsolarcellsandplanarsuperstrateand 14 J. Phys. Energy 3 2021032003 AZakutayevet al substratedevices.Next,wewillbrieflyreviewthemainefficiencyimprovementofQ-1Dsolarcellsineach configuration Sensitized-typesolarcell.Attheearlyage,Sb-basedchalcogenidesensitized-typesolarcellswasledby SeokgroupfromKoreaResearchInstituteofChemic

注意事项

本文(Refined optoelectronic properties of silicon nanowires for improving photovoltaic properties of crystalline solar cells a simulation study)为本站会员(光伏小萝莉)主动上传,solarbe文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知solarbe文库(发送邮件至401608886@qq.com或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2008-2013 solarbe文库网站版权所有
经营许可证编号:京ICP备10028102号-1

1
收起
展开