solarbe文库
首页 solarbe文库 > 资源分类 > PDF文档下载

【PVPMC】EURAC-Lindig-性能损失率计算的理论与实践

  • 资源大小:5.79MB        全文页数:33页
  • 资源格式: PDF        下载权限:游客/注册会员/VIP会员    下载费用:5金币 【人民币5元】
游客快捷下载 游客一键下载
会员登录下载
下载资源需要5金币 【人民币5元】

邮箱/手机:
温馨提示:
支付成功后,系统会根据您填写的邮箱或者手机号作为您下次登录的用户名和密码(如填写的是手机,那登陆用户名和密码就是手机号),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦;
支付方式: 微信支付    支付宝   
验证码:   换一换

 
友情提示
2、本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   
4、下载无积分?请看这里!
积分获取规则:
1充值vip,全站共享文档免费下;直达》》
2注册即送10积分;直达》》
3上传文档通过审核获取5积分,用户下载获取积分总额;直达》》
4邀请好友访问随机获取1-3积分;直达》》
5邀请好友注册随机获取3-5积分;直达》》
6每日打卡赠送1-10积分。直达》》

【PVPMC】EURAC-Lindig-性能损失率计算的理论与实践

Sascha LindigEurac Research - University of LjubljanaTheory STL – seasonal and trend decomposition using LOESS, YoY – Year on Year method S. Lindig, PVPMC China 2 0 1 9 2 01 0 /1 2 /1 9 Comparison of calculation methodologiesHigh quality datasets – Metrics S. Lindig, PVPMC China 2 0 1 9 2 11 0 /1 2 /1 9 Comparison of calculation methodologiesHigh quality datasets – Methodologies 1 . R. B. Cleveland, W. S. Cleveland, J. E. McRae, I. Terpenning, STL A Seasonal-Trend Decomposition Procedure Based on Loess, Journal of official statistics 6 1 1 9 9 0 3 –3 3 .2 . Sascha Lindig, David Moser, Alan Curran, Roger French, Performance Loss Rates of PV systems of Task 1 3 database, IEEE PVSC 2 0 1 9 .3 . Ernest Hasselbrink, Mike Anderson, Zoe Defreitas, Mark Mikofski, Yu-Chen Shen, Sander Caldwell, Akira Terao, David Kavulak, Zach Campeau, David DeGraaff, Validation of the PVLife Model Using 3 Million Module-Years of Live Site Data, in IEEE 3 9 th Photovoltaic Specialists Conference PVSC, IEEE, 2 0 1 3 pp. 0 0 0 7 –0 0 1 2 . https//doi.org/1 0 .1 1 0 9 /PVSC.2 0 1 3 .6 7 4 4 0 8 7 . Seasonal Decomposition of Time Series using Loess STL1,2 Year on Year YoY3 S. Lindig, PVPMC China 2 0 1 9 2 21 0 /1 2 /1 9 Comparison of calculation methodologiesHigh quality datasets – BenchmarkingVAR yearly variation of powerYoY Year on Year – Comparison of daily power valuesLR Linear RegressionSTL Seasonal Time Series Decomposition using LoessC S D C l a s s i c a l S e a s o n a l DecompositionSCSF Statistical clear sky fitting YbY Year-by-Year comparison Power NOCT EURAC PV-systemPoly-crystalline silicon S. Lindig, PVPMC China 2 0 1 9 2 31 0 /1 2 /1 9 Comparison of calculation methodologiesHigh quality datasets – Benchmarking EURAC PV-systemPoly-crystalline siliconVAR yearly variation of powerYoY Year on Year – Comparison of daily power valuesLR Linear RegressionSTL Seasonal Time Series Decomposition using LoessC S D C l a s s i c a l S e a s o n a l DecompositionSCSF Statistical clear sky fitting YbY Year-by-Year comparison Power NOCT S. Lindig, PVPMC China 2 0 1 9 2 41 0 /1 2 /1 9 Comparison of calculation methodologiesHigh quality datasets – BenchmarkingVAR yearly variation of powerYoY Year on Year – Comparison of daily power valuesLR Linear RegressionSTL Seasonal Time Series Decomposition using LoessC S D C l a s s i c a l S e a s o n a l DecompositionSCSF Statistical clear sky fitting YbY Year-by-Year comparison Power NOCT S. Lindig, PVPMC China 2 0 1 9 2 51 0 /1 2 /1 9 Low Medium High S. Lindig, PVPMC China 2 0 1 9 2 61 0 /1 2 /1 9 S. Lindig, PVPMC China 2 0 1 9 2 71 0 /1 2 /1 9 Comparison of calculation methodologiesDigital power plant K. Radouane, A. Lindsay, P. Dupeyrat, B. Braisaz, An advanced model of pv power plants based on modelica, in 2 8 th EU PVSEC Proceedings, Paris, France, 2 0 1 3 Sep. 2 0 1 3 . Simulated PV data Total of 4 systems2 x 5 years repeated weather data2 x 4 years weather data 5 th year colder weather PLR for each of the 4 cases2 x PLR 0 /a2 x defined linear PLR valueMakes it possible to validate methods against a KNOWN PLR value S. Lindig, PVPMC China 2 0 1 9 2 81 0 /1 2 /1 9 Comparison of calculation methodologiesDigital power plant – NO degradation – same yearVAR yearly variation of powerYoY Year on Year – Comparison of daily power valuesLS-LR Least Square Linear RegressionR-LR Robust Linear RegressionSTL Seasonal Time Series Decomposition using LoessC S D C l a s s i c a l S e a s o n a l Decomposition SCSF Statistical clear sky fittingYbY Year-by-Year comparison Power NOCT S. Lindig, PVPMC China 2 0 1 9 2 91 0 /1 2 /1 9 Comparison of calculation methodologiesDigital power plant – NO degradation – different yearsVAR yearly variation of powerYoY Year on Year – Comparison of daily power valuesLS-LR Least Square Linear RegressionR-LR Robust Linear RegressionSTL Seasonal Time Series Decomposition using LoessC S D C l a s s i c a l S e a s o n a l Decomposition SCSF Statistical clear sky fittingYbY Year-by-Year comparison Power NOCT S. Lindig, PVPMC China 2 0 1 9 3 01 0 /1 2 /1 9 Comparison of calculation methodologiesDigital power plant – unknown degradation – different yearsVAR yearly variation of powerYoY Year on Year – Comparison of daily power valuesLS-LR Least Square Linear RegressionR-LR Robust Linear RegressionSTL Seasonal Time Series Decomposition using LoessC S D C l a s s i c a l S e a s o n a l Decomposition SCSF Statistical clear sky fittingYbY Year-by-Year comparison Power NOCT

注意事项

本文(【PVPMC】EURAC-Lindig-性能损失率计算的理论与实践)为本站会员(光伏小萝莉)主动上传,solarbe文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知solarbe文库(发送邮件至401608886@qq.com或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2008-2013 solarbe文库网站版权所有
经营许可证编号:京ICP备10028102号-1

1
收起
展开